首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Various composite adsorbents based on sulfonated poly(ether ether ketone)/manganese dioxide were prepared for the removal of stable and radioactive ions from contaminated aqueous solution. Batch adsorption experiments revealed superior adsorption capacities of the composite using very low initial concentration of studied elements. Starting with 1000 µg L−1 contaminated solution, the maximum equilibrium metal uptake capacity reached 2.0 mg g−1 for Pb2+, 1.9 mg g−1 for Cd2+, Cu2+ and Zn2+, and 3.7 mg g−1 for Co2+. In addition, the distribution coefficient reached 11,600 mL g−1 for 137Cs and 70,000 mL g−1 for 210Pb.

  相似文献   

2.
This study reports the effect of substituents in the ortho position of polyaniline on the adsorption capacity to remove the anionic dye methyl orange (MO) from an aqueous solution. The aim of this study is the synthesis of polyaniline (PANI) and its derivatives, poly-o-methylaniline (poly-o-toluidine, POT) and poly-o-methoxyaniline (poly-o-anisidine, POA) for the adsorption removal of MO dye. All polymers were obtained by oxidative polymerization of the corresponding monomers and characterized by scanning electron microscopy (SEM) and infrared spectroscopy (IR). The average particle size of the polymer was about 200 nm. The effect of various parameters such as pH, temperature, adsorption time and initial concentration was analyzed. It was found that the adsorption capacity for dye removal increases from 50.68 to 222.56 mg g−1 for PANI, from 16.89 to 66.57 mg g−1 for POT, and from 97.26 to 532.54 mg g−1 for POA with an increase in the initial dye concentration from 5 up to 50 mg L−1. For all polymers, the equilibrium state of MO adsorption was reached in 50 min. The results showed that MO adsorption on PANI, POT, and POA is well described by a pseudo second order kinetic model. Isothermal studies have shown that adsorption is in good agreement with the Langmuir isotherm model, as evidenced by higher values of correlation coefficients. Based on the data of thermodynamic studies, it was concluded that MO adsorption on PANI, POT, and POA is spontaneous and endothermic.  相似文献   

3.

For this study, ion-eroded cement was prepared from the cement required for construction of middle- and low-level radioactive waste repositories in caves. The properties for adsorption of 137Cs on cement before and after ion erosion were investigated. XRF, XRD, SEM–EDS and BET were used to analyse various cement materials. The effects of reaction time, solid–liquid ratio, initial radioactivity and different ions on adsorption were studied by static batch experiments. When the initial radioactivity was 1114.5 Bq L?1 and the solid–liquid ratio was 5 g L?1, the adsorption equilibrium time was 12 h. Adsorption of 137Cs on ion-eroded cement was more effective than that on untreated cement. The adsorption process was consistent with the pseudosecond-order kinetic model and the Freundlich isotherm model, and the process involved multilayer chemisorption. This study provides basic research data for construction of a disposal repository.

  相似文献   

4.

Poly(cyclotriphosphazene-co-phloroglucinol) (PCPP) microspheres, a new solid phase extraction for extracting uranium(VI), synthesized via one-pot precipitation copolymerization. The PCPP microspheres were characterized by FT-IR, SEM/EDS, zeta potential and N2 adsorption/desorption isotherms. Through the extraction experiment to evaluate the extraction behavior of the PCPP microspheres for uranium(VI). The extractant can achieve the optimal effect under the conditions of contact time with 60 min, pH = 3.5, initial concentration 100 mg L−1 and extractant dosage 0.70 g L−1. The extraction behavior obeyed with the pseudo second-order model and Langmuir isotherm model.

  相似文献   

5.

Stereoscopic porous microspheres based gellan gum (GG–Ca) were successfully prepared by sol–gel method using ethyl acetate as porogen and glutaraldehyde as crosslinker. The obtained GG–Ca microspheres were mainly of mesoporous with the average pore diameter was about 4 nm. It displayed a higher ability for uranium removal. In addition, the uranium adsorption process was endothermic and spontaneous following a pseudo-second-order and the adsorption isotherm was the best fit with the Freundlich model with maximum uranium capacity of 202.26 mg g−1. The UO2+ adsorption mechanism is ion-exchange with Ca2+ based on SEM, EDX and XPS data analysis.

  相似文献   

6.
Biochar was prepared from corncob-to-xylose residue (CCXR) by KOH activation and anaerobic pyrolysis method. The effect of activation temperature on the microstructure of the biochar was studied. Results showed that the biochar prepared at 850°C (850NBC) possessed high specific surface area and exhibited excellent adsorption property. The maximum adsorption capacity of 2249 mg g−1 was obtained when 850NBC was used for treating methylene blue (MB) solution. Adsorption isotherm fittings revealed that Langmuir and Freundlich models were applicable to 850NBC adsorption process, and the adsorption process was limited by adsorption site and the biochar surface functional groups. Furthermore, 850NBC showed good adsorption property when it was used to treat the other organic dyes of Congo red (751 mg g−1), Orange II (735 mg g−1), Indigo carmine (662 mg g−1) and Methyl Orange (465 mg g−1). Biochar 850NBC also possessed an acceptable recyclability which maintained 68.7% absorption capacity after 6 cycles when it was used to treat MB solution. These results proposed that 850NBC is expected to be a promising potential adsorbent for treating organic dyes waste water.  相似文献   

7.
A new bi-functionalized xerogel is fabricated and then was identified by 29Si CP MAS NMR, SEM, FTIR, and nitrogen adsorption–desorption approaches. As-prepared xerogel efficiency for simultaneous uptake of methylene blue (MB) and Pb2+ ions from aqueous solution is investigated. Individual and combination effects of operating variables (xerogel mass, contact time and initial MB and Pb2+ ion concentration) on the retention performance is achieved with central composite design (CCD) and upgraded through response surface method (RSM). Batch equilibrium outcomes uncovered that MB and Pb2+ ions adsorption onto hybrid composite could be all around depicted by Langmuir isotherm model contrasted with Freundlich equation. Howbeit, the column trials reported that the breakthrough capacities of MB and Pb(II) are observed to be 512 mg.g−1 and 400 mg.g−1 respectively. XPS and FTIR investigations uncovered that the main mechanism of lead uptake ought to be credited to the chelation with –NH2 and ion exchange with –SH groups in the xerogel frameworks. While the MB adsorption system is proposed to be electrostatic attractions, π-π stacking interactions and hydrogen bonds. The work undertaken in this research highlights the major role of the as-synthesized xerogel for treatment of industrial wastewater.  相似文献   

8.
《Arabian Journal of Chemistry》2020,13(11):7695-7706
A batch adsorption experiments were carried out to study the role of nanoparticles and nanocomposite on removal of some heavy metals and fungicides from aqueous solution. Nano-Hydroxyapatite (n-HAP), Nano-Bentonite (n-Bo) and Bentonite-hydroxyapatite nanocomposite (B-HAP NC) evaluated for the removal of some heavy metals and fungicides. The nanoparticles and nanocomposite were characterized by TEM, SEM and AFM, X-ray powder diffraction (XRD) and BET surface area. The batch adsorption was done using nanoparticles with Pb2+ and Ni2+ as example of heavy metals with concentrations up to 25 mgL−1. Also, the adsorption experiment was conducted using nano-particles (n-HAP, n-Bo and B-HAP NC) with fungicides Stop Feng and Eurozole with concentrations 20 to 200 μg L−1. Langmuir and Freundlich isotherm equations were employed to study the adsorption. The adsorption kinetics were conducted metal ion (Pb2+ and Ni2+) with residence time. The results indicated the maximum adsorption capacity of Ni+2 was occurred on (n-HAP). While that maximum adsorption capacity of Pb2+ was occurred on (B-HAP NC). The rate of Ni+2 removal was found to be very rapid during the initial 60 min. The adsorption of Pb+2 by the n-HAP and (B-HAP NC) was a slow increase with time, it did not bring any remarkable effect. Also, the efficiency of adsorbent compounds used to remove the residue of fungicides Stop Feng and Eurozole shown the highest removal rates obtained with used nano-hydroxyapatite followed by bentonite-hydroxyapatitenanocomposite and nano-bentonite, respectively. The current results are very useful in the treatment of wastewater and the removal of heavy metals and fungicides, consequently making them suitable for agricultural purposes.  相似文献   

9.

The amino-hydroxyapatite (HAP-NH2) was synthesized by grafted amino functional groups onto hydroxyapatite. The uranium adsorption performance of HAP-NH2 was studied under different conditions. The results indicated that HAP-NH2 possessed high adsorption capacity (96 mg g−1), wide pH values range (2–8) and fast adsorption rate (20 min). The adsorption kinetic and adsorption isotherm models of HAP-NH2 revealed that the uranium adsorption process was belonged to chemical adsorption. Furthermore, the main forces between uranium ions and HAP-NH2 were attributed to hydroxyl, amino and phosphorous functional groups.

  相似文献   

10.

The removal of U(VI) by biochar fibers from aqueous solutions has been investigated prior and after MnO2 surface-deposition. The removal efficiency has been studied as a function of pH, U(VI) concentration, ionic strength, temperature and contact time. The fibers morphology and surface complexes were analyzed by SEM–EDX and FTIR, respectively. Evaluation of the experimental data indicates that the composite presents extraordinary adsorption capacity (qmax = 3.8 mmol g−1, 904 mg g−1), which is attributed to the formation of inner-sphere surface complexes, and that the adsorption reaction is a relatively fast, endothermic and entropy-driven process.

  相似文献   

11.

In this paper, polycyclotriphosphazene coated carbon nanotubes (PZS-OH/CNT) composite material has been synthesized via a facial method. The prepared PZS-OH/CNT was characterized by FTIR, BET, zeta potential and SEM. The material was investigated as an adsorbent for the adsorption towards U(VI) from aqueous solutions. Several parameters like solution pH, contact time and temperature were used to evaluate the sorption efficiency. The results indicated that the adsorption capacity of uranium on PZS-OH/CNT was improved from 41.48 mg g−1 for CNT to 338.98 mg g−1 due to the presence of functional groups on PZS-OH/CNT. The U(VI) sorption on PZS-OH/CNT was well fitted to the Langmuir adsorption isotherm and pseudo-second kinetics models. The thermodynamic parameters (ΔH, ΔS and ΔG) showed the U(VI) adsorption on CNT and PZS-OH/CNT was endothermic and spontaneous in nature.

  相似文献   

12.
《先进技术聚合物》2018,29(1):285-293
A novel kind of adsorbent bead was prepared from chitosan (CS) by ionic‐linked with sodium phytate (SP) and then covalent cross‐linked with epichlorohydrin (ECH) by nonsolvent‐induced phase separation. The structure of the beads was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and X‐ray photoelectron spectroscopy. The adsorption properties of the beads for Cu(II) ions under different adsorption conditions were investigated. The maximum adsorption capacity of Cu(II) ions was 177.1 mg g−1 at the conditions of pH of 5.2, temperature of 50°C, and initial Cu(II) ion concentration of 728.3 mg L−1. The adsorption isotherm of Cu(II) ions on the CS/SP/ECH beads was well correlated with the Langmuir isotherm model, and the whole adsorption process could be better followed the pseudo‐second‐order kinetic model. Moreover, the CS/SP/ECH beads still exhibited good adsorption capacity even after the 15th regeneration cycles.  相似文献   

13.

In this paper, three-dimensional graphene (3DG) electrode material was prepared by hydrothermal reduction using graphene oxide as precursor. Its morphology and structure were characterized by SEM, BET, XRD, Raman, FTIR and TG, and its electrochemical performance was also measured. The results showed that 3DG possessed hierarchical pore structure, large specific surface area, high specific capacitance and low impedance. Using 3DG as electrode material for electrosorption of UO22+, it showed that the saturated adsorption capacity can reach up to 113.80 mg g?1 and the adsorption rate is 0.32 mg g?1 min?1 at a given optimal applied voltage of 1.8 V.

  相似文献   

14.
In the current study tea waste and rice husk biochars were used for the elimination of Cr(VI) from wastewater with the objectives to study the effect of pH (3–10), shaking time (0.016–24 h), sorbent dose (0.1–1.3 g L−1) and initial concentration of Cr(VI) (10–250 mg L−1). The Cr(VI) sorption was studied under various factors in which solution pH played a main role and at pH 5.2, maximum 99.3% and 96.8% Cr(VI) were removed by tea waste biochar (TWB) and rice husk biochar (RHB), respectively. In comparison, 197.5 mg g−1 and 195.24 mg g−1 Cr(VI) were sorbed by TWB and RHB, respectively with 120 mg L−1 initial Cr(VI) concentration. In contact time study, after 2 h, equilibrium was achieved for both biochars which indicated that the Cr(VI) elimination from aqueous medium is a fast process. Kinetic and isotherm modeling data showed that pseudo-second order model and Langmuir (monolayer sorption) models provided the best fit for sorption of Cr(VI) onto both biochars. The –OH, COO– and –NH2 functional groups were involved in the sorption of Cr(VI) onto biochars according to FTIR. Biochars produced from both biomass effectively removed Cr(VI) from polluted water, however in comparison sorption capacity of TWB was slightly higher than RHB. It was concluded that TWB and RHB could provide a cost-effective and viable option for elimination of Cr(VI) from wastewater.  相似文献   

15.

Vertical distributions of global fallout 137Cs and 14C were investigated in a Japanese forest soil in 2001. Even 38 years after the fallout, 137Cs was still observed mostly in the uppermost 5 cm. A preferential accumulation of 137Cs was found in a 1-cm-thick transition layer between organic-rich A and underlying B horizons. This unique observation indicated that 137Cs migrated through the A horizon at a rate of 0.20 % year−1 and the transition layer acted as a barrier for 137Cs migration to deeper layers. The vertical distributions of 137Cs and 14C were significantly correlated, suggesting a coupled downward migration of 137Cs and organic matter on a time scale of decades, along the same physical pathways.

  相似文献   

16.
《Arabian Journal of Chemistry》2020,13(12):9019-9033
Adsorption performance and stability of the carboxyl groups modified straws and their extracts of cellulose, lignin, and hemicellulose for Pb2+ were investigated, and the optimum pH range for Pb2+ adsorption was determined by considering both the stability and capacity of the modified biosorbents for the first time. Results showed that adsorption capacity and stability of the straws and extracts were both improved significantly after modification. Adsorption capacities of the modified straws and extracts followed the order: modified hemicellulose > modified lignin, modified straw > modified cellulose, while stability of them followed the reverse order. In the optimum pH range from 4.0 to 5.0, modified rape and cotton straw showed better stability than the modified maize straw, and total organic carbon (TOC) values determined from the two modified straws and extracts were lower than 5.0 mg L−1 even after adsorption for 30 days, which reached the drinking water standard in China.  相似文献   

17.

Radioactivity measurements were performed, at the east (Georgia) and west (Romania) part of the Black Sea, for natural radionuclides and 137Cs in collected water and sediment samples using lab-based and in situ gamma-ray spectrometry. The activity concentrations of 137Cs at Georgian area in the sediment and seawater ranged between 20 to 50 Bq kg−1 and 8 to 25 Bq m−3, respectively while at the Romanian area the activity concentration ranged from 10 to 30 Bq kg−1 and 3 to 15 Bq m−3, respectively. The activity concentration values of 7Be at the Georgian area reached values up to (30 ± 4) Bq kg−1. The induced dose rates to marine organisms in both areas estimated by the ERICA assessment tool were much lower than the screening value of 10 μGy h−1.

  相似文献   

18.
In the present work, Mn‐doped CuO‐NPs‐AC was prepared by a simple method, characterized using various techniques such as FESEM, EDX, XRD, PSD, and pHpzc and finally used for the adsorption of malachite green (MG) and methyl orange (MO) in a number of single and binary solutions. A series of adsorption experiments were conducted to investigate and optimize the influence of various factors (such as different pH, concentration of MG and MO, adsorbent mass, and sonication time) on the simultaneous adsorption of MG and MO using response surface methodology. Under optimal conditions of pH 10, adsorbent dose of 0.02 g, MG concentration of 30 mg L?1, MO concentration of 30 mg L?1, and sonication time of 4.5 min at room temperature, the maximum predicted adsorption was observed to be 100.0%, for both MG and MO, showing that there is a favorable harmony between the experimental data and model predictions. The adsorption isotherm of MO and MG by Mn‐doped CuO‐NPs‐AC could be well clarified by the Langmuir model with maximum adsorption capacity of 320.69 mg g?1 and 290.11 mg g?1 in the single solution and 233.02 mg g?1 and 205.53 mg g?1 in the binary solution by 0.005 g of adsorbent mass for MG and MO, respectively. Kinetic studies also revealed that both MG and MO adsorption were better defined by the pseudo‐second order model for both solutions. In addition, the thermodynamic constant studies disclosed that the adsorption of MG and MO was likely to be influenced by a physisorption mechanism. Eventually, the reusability of the Mn‐doped CuO‐NPs‐AC after six times showed a reduction in the adsorption percentage of MG and MO.  相似文献   

19.

Highly crosslinked organic–inorganic hybrid polymer poly(cyclotriphosphazene-co-melamine) microspheres (PZM) were synthesized by a simple method. The microspheres was characterized by FTIR, SEM and EDX. It was applied to eliminate thorium(IV) from aqueous solution under various conditions, i.e., pH, initial concentration, dosage and contact time. The experimental data were well-imitated via the pseudo-second-order kinetic model and its adsorption processes comply with the Langmuir isotherm model. Adsorption thermodynamic studies demonstrated that the adsorption process, in essence, was spontaneous and endothermic. Furthermore, the maximum experimental adsorption capacity was 98.6 mg g?1 for initial thorium(IV) concentration 50 mg L?1. When pH?=?0.0, the thorium(IV) removal efficiency reached at 76.9%, which indicates that the adsorbent can also was used in a peracid environment. Adsorption behavior of thorium(IV) onto the microspheres were weakly affected via temperature, implying that adsorption would be done at room temperature.

  相似文献   

20.
In this study, the CuS nanoparticles loaded on activated carbon (CuS‐NPs‐AC) composite was synthesized and then, characterized by XRD and FE‐SEM analyses. The prepared composite was used as a potential adsorbent for the simultaneous ultrasound‐assisted removal of Indigo Carmine (IC) and Safranin‐O (SO). The CuS‐NPs‐AC dose (0.01‐0.03 g), sonication time (1‐5 min), initial SO concentration (5‐15 mg L‐1) and initial IC concentration (5‐15 mg L‐1) as expectable effective parameters were studied by central composite design (CCD) under response surface methodology (RSM) to obtain an useful knowledge about the effect of simultaneous interaction between IC and SO on their removal percentage. The optimum SO and IC removal percentages were determined to be 98.24 and 97.15% at pH = 6, 0.03 g of the CuS‐NPs‐AC, 3 min sonication time, 12 and 10 mg L‐1 of IC and SO. The values of coefficient of determination (R2) for SO and IC were 0.9608 and 0.9796, respectively, indicating the favorable fitness of the experimental data to the second order polynomial regression model. The isotherm data were well correlated with Freundlich model. The maximum monolayer adsorption capacities of 87.5 and 69.90 mg g‐1 at room temperature for IC and SO in the investigated binary system expressed the high efficiency of the novel adsorbent for water cleanup within a short time. The investigation of correlation between time and rate of adsorption revealed that IC and SO adsorption onto the CuS‐NPs‐AC followed pseudo‐second‐order and intra‐particle diffusion simultaneously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号