首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We develop algorithms to construct inner approximations of the cone of positive semidefinite matrices via linear programming and second order cone programming. Starting with an initial linear algebraic approximation suggested recently by Ahmadi and Majumdar, we describe an iterative process through which our approximation is improved at every step. This is done using ideas from column generation in large-scale linear programming. We then apply these techniques to approximate the sum of squares cone in a nonconvex polynomial optimization setting, and the copositive cone for a discrete optimization problem.  相似文献   

2.
3.
We show that SDP (semidefinite programming) and SOCP (second order cone programming) relaxations provide exact optimal solutions for a class of nonconvex quadratic optimization problems. It is a generalization of the results by S. Zhang for a subclass of quadratic maximization problems that have nonnegative off-diagonal coefficient matrices of quadratic objective functions and diagonal coefficient matrices of quadratic constraint functions. A new SOCP relaxation is proposed for the class of nonconvex quadratic optimization problems by extracting valid quadratic inequalities for positive semidefinite cones. Its effectiveness to obtain optimal values is shown to be the same as the SDP relaxation theoretically. Numerical results are presented to demonstrate that the SOCP relaxation is much more efficient than the SDP relaxation.  相似文献   

4.
We first show that the closedness of the characteristic cone of the constraint system of a parametric robust linear optimization problem is a necessary and sufficient condition for each robust linear program with the finite optimal value to admit exact semidefinite linear programming relaxations. We then provide the weakest regularity condition that guarantees exact second-order cone programming relaxations for parametric robust linear programs.  相似文献   

5.
Probabilistically constrained quadratic programming (PCQP) problems arise naturally from many real-world applications and have posed a great challenge in front of the optimization society for years due to the nonconvex and discrete nature of its feasible set. We consider in this paper a special case of PCQP where the random vector has a finite discrete distribution. We first derive second-order cone programming (SOCP) relaxation and semidefinite programming (SDP) relaxation for the problem via a new Lagrangian decomposition scheme. We then give a mixed integer quadratic programming (MIQP) reformulation of the PCQP and show that the continuous relaxation of the MIQP is exactly the SOCP relaxation. This new MIQP reformulation is more efficient than the standard MIQP reformulation in the sense that its continuous relaxation is tighter than or at least as tight as that of the standard MIQP. We report preliminary computational results to demonstrate the tightness of the new convex relaxations and the effectiveness of the new MIQP reformulation.  相似文献   

6.
We propose a modified alternating direction method for solving convex quadratically constrained quadratic semidefinite optimization problems. The method is a first-order method, therefore requires much less computational effort per iteration than the second-order approaches such as the interior point methods or the smoothing Newton methods. In fact, only a single inexact metric projection onto the positive semidefinite cone is required at each iteration. We prove global convergence and provide numerical evidence to show the effectiveness of this method.  相似文献   

7.
It is co-NP-complete to decide whether a given matrix is copositive or not. In this paper, this decision problem is transformed into a quadratic programming problem, which can be approximated by solving a sequence of linear conic programming problems defined on the dual cone of the cone of nonnegative quadratic functions over the union of a collection of ellipsoids. Using linear matrix inequalities (LMI) representations, each corresponding problem in the sequence can be solved via semidefinite programming. In order to speed up the convergence of the approximation sequence and to relieve the computational effort of solving linear conic programming problems, an adaptive approximation scheme is adopted to refine the union of ellipsoids. The lower and upper bounds of the transformed quadratic programming problem are used to determine the copositivity of the given matrix.  相似文献   

8.
We present a decomposition-approximation method for generating convex relaxations for nonconvex quadratically constrained quadratic programming (QCQP). We first develop a general conic program relaxation for QCQP based on a matrix decomposition scheme and polyhedral (piecewise linear) underestimation. By employing suitable matrix cones, we then show that the convex conic relaxation can be reduced to a semidefinite programming (SDP) problem. In particular, we investigate polyhedral underestimations for several classes of matrix cones, including the cones of rank-1 and rank-2 matrices, the cone generated by the coefficient matrices, the cone of positive semidefinite matrices and the cones induced by rank-2 semidefinite inequalities. We demonstrate that in general the new SDP relaxations can generate lower bounds at least as tight as the best known SDP relaxations for QCQP. Moreover, we give examples for which tighter lower bounds can be generated by the new SDP relaxations. We also report comparison results of different convex relaxation schemes for nonconvex QCQP with convex quadratic/linear constraints, nonconvex quadratic constraints and 0–1 constraints.  相似文献   

9.
We address the exact semidefinite programming feasibility problem (SDFP) consisting in checking that intersection of the cone of positive semidefinite matrices and some affine subspace of matrices with rational entries is not empty. SDFP is a convex programming problem and is often considered as tractable since some of its approximate versions can be efficiently solved, e.g. by the ellipsoid algorithm.We prove that SDFP can decide comparison of numbers represented by the arithmetic circuits, i.e. circuits that use standard arithmetical operations as gates. Our reduction may give evidence to the intrinsic difficulty of SDFP (contrary to the common expectations) and clarify the complexity status of the exact SDP—an old open problem in the field of mathematical programming.  相似文献   

10.
Semidefinite positiveness of operators on Euclidean spaces is characterized. Using this characterization, we compute in a direct way the first-order and second-order tangent sets to the cone of semidefinite positive operators on such a space. These characterizations are useful for optimality conditions in semidefinite programming.  相似文献   

11.
The present work is intended as a first step towards applying semidefinite programming models and tools to discrete lot-sizing problems including sequence-dependent changeover costs and times. Such problems can be formulated as quadratically constrained quadratic binary programs. We investigate several semidefinite relaxations by combining known reformulation techniques recently proposed for generic quadratic binary problems with problem-specific strengthening procedures developed for lot-sizing problems. Our computational results show that the semidefinite relaxations consistently provide lower bounds of significantly improved quality as compared with those provided by the best previously published linear relaxations. In particular, the gap between the semidefinite relaxation and the optimal integer solution value can be closed for a significant proportion of the small-size instances, thus avoiding to resort to a tree search procedure. The reported computation times are significant. However improvements in SDP technology can still be expected in the future, making SDP based approaches to discrete lot-sizing more competitive.  相似文献   

12.
This article studies some geometrical aspects of the semidefinite linear complementarity problem (SDLCP), which can be viewed as a generalization of the well-known linear complementarity problem (LCP). SDLCP is a special case of a complementarity problem over a closed convex cone, where the cone considered is the closed convex cone of positive semidefinite matrices. It arises naturally in the unified formulation of a pair of primal-dual semidefinite programming problems. In this article, we introduce the notion of complementary cones in the semidefinite setting using the faces of the cone of positive semidefinite matrices and show that unlike complementary cones induced by an LCP, semidefinite complementary cones need not be closed. However, under R0-property of the linear transformation, closedness of all the semidefinite complementary cones induced by L is ensured. We also introduce the notion of a principal subtransformation with respect to a face of the cone of positive semidefinite matrices and show that for a self-adjoint linear transformation, strict copositivity is equivalent to strict semimonotonicity of each principal subtransformation. Besides the above, various other solution properties of SDLCP will be interpreted and studied geometrically.  相似文献   

13.
In this paper we present penalty and barrier methods for solving general convex semidefinite programming problems. More precisely, the constraint set is described by a convex operator that takes its values in the cone of negative semidefinite symmetric matrices. This class of methods is an extension of penalty and barrier methods for convex optimization to this setting. We provide implementable stopping rules and prove the convergence of the primal and dual paths obtained by these methods under minimal assumptions. The two parameters approach for penalty methods is also extended. As for usual convex programming, we prove that after a finite number of steps all iterates will be feasible.  相似文献   

14.
This article studies some geometrical aspects of the semidefinite linear complementarity problem (SDLCP), which can be viewed as a generalization of the well-known linear complementarity problem (LCP). SDLCP is a special case of a complementarity problem over a closed convex cone, where the cone considered is the closed convex cone of positive semidefinite matrices. It arises naturally in the unified formulation of a pair of primal-dual semidefinite programming problems. In this article, we introduce the notion of complementary cones in the semidefinite setting using the faces of the cone of positive semidefinite matrices and show that unlike complementary cones induced by an LCP, semidefinite complementary cones need not be closed. However, under R 0-property of the linear transformation, closedness of all the semidefinite complementary cones induced by L is ensured. We also introduce the notion of a principal subtransformation with respect to a face of the cone of positive semidefinite matrices and show that for a self-adjoint linear transformation, strict copositivity is equivalent to strict semimonotonicity of each principal subtransformation. Besides the above, various other solution properties of SDLCP will be interpreted and studied geometrically.  相似文献   

15.
本文提出了半定规划的限制逆问题与广义逆问题,利用半定规划的最优性条件,分别给出了其在l∞,l1,l2模意义下的数学模型,它们仍为半定规划问题。  相似文献   

16.
We consider the problem of nonparametric estimation of unknown smooth functions in the presence of restrictions on the shape of the estimator and on its support using polynomial splines. We provide a general computational framework that treats these estimation problems in a unified manner, without the limitations of the existing methods. Applications of our approach include computing optimal spline estimators for regression, density estimation, and arrival rate estimation problems in the presence of various shape constraints. Our approach can also handle multiple simultaneous shape constraints. The approach is based on a characterization of nonnegative polynomials that leads to semidefinite programming (SDP) and second-order cone programming (SOCP) formulations of the problems. These formulations extend and generalize a number of previous approaches in the literature, including those with piecewise linear and B-spline estimators. We also consider a simpler approach in which nonnegative splines are approximated by splines whose pieces are polynomials with nonnegative coefficients in a nonnegative basis. A condition is presented to test whether a given nonnegative basis gives rise to a spline cone that is dense in the space of nonnegative continuous functions. The optimization models formulated in the article are solvable with minimal running time using off-the-shelf software. We provide numerical illustrations for density estimation and regression problems. These examples show that the proposed approach requires minimal computational time, and that the estimators obtained using our approach often match and frequently outperform kernel methods and spline smoothing without shape constraints. Supplementary materials for this article are provided online.  相似文献   

17.
While dynamic decision making has traditionally been represented as scenario trees, these may become severely intractable and difficult to compute with an increasing number of time periods. We present an alternative tractable approach to multiperiod international portfolio optimization based on an affine dependence between the decision variables and the past returns. Because local asset and currency returns are modeled separately, the original model is non-linear and non-convex. With the aid of robust optimization techniques, however, we develop a tractable semidefinite programming formulation of our model, where the uncertain returns are contained in an ellipsoidal uncertainty set. We add to our formulation the minimization of the worst case value-at-risk and show the close relationship with robust optimization. Numerical results demonstrate the potential gains from considering a dynamic multiperiod setting relative to a single stage approach.  相似文献   

18.
在不变凸的假设下来讨论多目标半定规划的最优性条件、对偶理论以及非凸半定规划的最优性条件.首先给出了非凸半定规划的一个KKT条件成立的充分必要条件, 并利用此定理证明了其最优性必要条件.其次讨论了多目标半定规划的最优性必要条件、充分条件, 并对其建立Wolfe对偶模型, 证明了弱对偶定理和强对偶定理.  相似文献   

19.
The purpose of this paper is two-fold. Firstly, we show that every Cholesky-based weighted central path for semidefinite programming is analytic under strict complementarity. This result is applied to homogeneous cone programming to show that the central paths defined by the known class of optimal self-concordant barriers are analytic in the presence of strictly complementary solutions. Secondly, we consider a sequence of primal–dual solutions that lies within a prescribed neighborhood of the central path of a pair of primal–dual semidefinite programming problems, and converges to the respective optimal faces. Under the additional assumption of strict complementarity, we derive two necessary and sufficient conditions for the sequence of primal–dual solutions to converge linearly with their duality gaps. This research was supported by a grant from the Faculty of Mathematics, University of Waterloo and by a Discovery Grant from NSERC.  相似文献   

20.
A standard quadratic problem consists of finding global maximizers of a quadratic form over the standard simplex. In this paper, the usual semidefinite programming relaxation is strengthened by replacing the cone of positive semidefinite matrices by the cone of completely positive matrices (the positive semidefinite matrices which allow a factorization FF T where F is some non-negative matrix). The dual of this cone is the cone of copositive matrices (i.e., those matrices which yield a non-negative quadratic form on the positive orthant). This conic formulation allows us to employ primal-dual affine-scaling directions. Furthermore, these approaches are combined with an evolutionary dynamics algorithm which generates primal-feasible paths along which the objective is monotonically improved until a local solution is reached. In particular, the primal-dual affine scaling directions are used to escape from local maxima encountered during the evolutionary dynamics phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号