首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
LiFePO4在饱和LiNO3溶液中的锂化行为   总被引:1,自引:0,他引:1  
锂离子电池是目前应用最广泛的二次电池,均利用有机电解液。然而,有机体系锂离子电池存在易燃、易爆的安全隐患,限制了其使用范围。水溶液锂离子电池作为一类新型的二次电池[1 ̄10],使用水溶液电解液代替有机电解液,消除了因有机电解液与电极材料反应形成枝晶可能造成的燃烧、爆炸等安全隐患,使其在低电压电池如铅酸电池、碱锰电池等领域的应用有很大的竞争潜力[10]。目前,大量研究集中在选择合适的电极材料来组装水溶液锂离子电池,文献报道的水溶液锂离子电池正极材料主要有LiMnO4[1 ̄9]、LiNi1-xCoO2[10],但是LiMnO4在循环约20次后容…  相似文献   

2.
0引言为解决目前日益严重的汽车尾气排放对城市空气造成污染问题,作为绿色能源的锂离子电池已成为动力电池的首选对象。国际上,高容量、大功率锂离子电池早于1995年已开始研制。1996年,我国天津电源研究所也进行了大容量锂离子蓄电池及电池组的探索[1]。目前,锂离子电池的正极材料是制约其大规模推广应用的关键。现研究的正极材料主要包括具有层状结构的LiCoO2,LiN iO2和LiM nO2及具有尖晶石结构的LiM n2O4等。其中LiC oO2作为目前唯一已经商业化的正极材料具有理论容量高、可循环性能好等优点,但因Co资源的相对缺乏导致其价格高昂。…  相似文献   

3.
锂离子电池正极材料LiMn2O4的低热固相合成与性能表征   总被引:6,自引:0,他引:6  
锂离子电池具有比能量高、环境污染小等优点,广泛应用于手提电话、便携式电脑、摄像机等设备中。其正极材料的研究是锂离子电池的研究重点。层状结构的LiCoO2、LiNiO2和尖晶石结构的LiMn2O4是仅有的三种能在3.5V以上电位可嵌入Li的正极材料[1~3]。目前市售的锂离子电池主要采用LiCoO2作正极材料,但由于Co资源缺乏和价格相对昂贵,而锰资源丰富,价格低廉且无毒,对环境友好,因此世界各国都在大力进行以LiMn2O4为正极材料的锂离子电池的实用化研究。LiMn2O4传统的制备方法是高温固相反应合成法[4~7],但由于Mn的变价多,与Li形成贫Li或…  相似文献   

4.
层状Li(Ni1-xCox)O2结构研究   总被引:5,自引:0,他引:5  
0引言层状钴酸锂是目前锂离子电池主要正极材料,但是,随着锂离子电池的广泛使用,急需比钴酸锂价格低和来源广泛的正极材料,层状锰酸锂和层状镍酸锂受到重视。由于锰氧化物存在有J-T效应,因此,严格意义上的层状锰酸锂的制备极其困难。制备层状镍酸锂也非常困难,高温反应极易生成Li1-xNi1 xO2,具有此种结构的镍酸锂存在严重首次能量衰减和循环性能下降的缺点。采用其他元素掺杂镍酸锂克服其缺点的研究已经很多,其中钴掺杂镍酸锂由于显示了良好的效果而被认为是最有希望替代钴酸锂的锂离子电池正极材料。有关层状镍钴酸锂的研究很多,但不少的…  相似文献   

5.
锂离子电池正极材料LiMn2-xCrxO4电化学性能的研究   总被引:4,自引:1,他引:4  
针对尖晶石型LiMn2O4锂离子电池正极材料的容量衰减,提出了相应的抑制方法,所合成的LiMn2-xCrxO4(0相似文献   

6.
LiCoO2对LiMn2O4改性过程的研究   总被引:4,自引:0,他引:4  
在LiCoO2、LiMn2O4、LiNiO2这三种锂离子电池正极材料中,尖晶石LiMn2O4由于具有价廉、对环境友好、使用安全的显著优点,被普遍认为是最有希望的新型正极材料。但该材料在高温下较快的容量衰减制约了其规模应用[1~3]。为改善LiMn2O4的高温性能,各国学者普遍采用掺杂法,即在制备L  相似文献   

7.
新合成方法制备的LiCoO2正极材料的结构和电化学性能研究   总被引:2,自引:0,他引:2  
王剑  其鲁  柯克  晨辉 《无机化学学报》2004,20(6):635-640
采用新合成方法制备了锂离子二次电池正极材料LiCoO2。通过ICP-AES、XRD、SEM、电化学方法等测试分析了所合成材料的物理性质和电化学性能,并与商品LiCoO2材料作了对比研究。同时分别以国产MCMB和石墨作负极活性物质、合成的LiCoO2作正极活性物质做成锂离子电池,对其电化学性能进行了测试。实验结果表明,所合成的LiCoO2材料的电化学性能优于其它两种商品LiCoO2材料,其初始放电容量为155.0 mAh·g-1,50次循环后的容量保持率达95.3%,而且以此为正极的锂离子电池也表现出优良的电化学性能。计时电位分析结果还表明,合成的材料在充放电循环过程中发生了三次相转变过程,但相变过程具有良好的可逆性。  相似文献   

8.
LiCoO2梯度包覆LiNi0.96Co0.04O2电极材料的电化学性能   总被引:2,自引:0,他引:2  
镍钴酸锂(LiNi0.8Co0.2O2)与目前商业用锂离子电池正极材料钴酸锂(LiCoO2)相比,具有成本低、实际比容量高和环境友好等优势。但LiNi0.8Co0.2O2的充放循环性能还有待提高,对其进行阳离子掺杂或表面修饰可以改善其电化学性能,这方面的研究已经成为热点。Fey等人[1]用溶胶凝胶法制  相似文献   

9.
锂离子二次电池电解质材料LiPF6的制备及表征   总被引:3,自引:0,他引:3  
0引言 液态锂离子电池自1990年开发成功以来,由于具有比能量高、工作电压高、应用温度范围宽、自放电率低、循环寿命长、无污染、安全性能好等许多独特的优势[1],所以其发展前景十分广阔.目前液态锂离子二次电池中开发使用的无机阴离子导电盐主要有LiClO4、LiPF6、LiAsF6等,但LiClO4为强氧化剂,使用不安全而不宜用于电池,LiAsF6虽然性能颇佳,但有毒且价格较贵,故也不宜广泛使用.LiPF6被认为是目前较合适的电解质[1],但其制备困难,价格较贵,且目前报道的合成方法也多是以HF为介质[2~5].本文作者以PF5和LiF为原料在CH3CN溶剂中简单有效地合成了高纯LiPF6,并通过在手套箱中制样的方法对目标产物进行了红外、热重和X射线衍射分析,给出了LiPF6的红外光谱图、热重分析数据和X射线衍射图.  相似文献   

10.
>为获得综合性能更好的锂离子二次电池正极材料, 分析了Co掺杂对LixNiO2电化学性能的影响. 采用密度泛函DFT理论对LixNiO2和LixNi0.5Co0.5O2的平均放电电压和态密度进行了计算. 同时, 用共沉淀法制备了LixNiO2和LixNi0.5Co0.5O2锂离子二次电池正极材料, 并对其进行了XRD结构分析和恒流充放电测试. 实验和计算结果表明: 随锂离子嵌入正极(电池放电), 电池的电压逐渐降低, 材料的态密度峰向低能量方向移动; 与LixNiO2相比, LixNi0.5Co0.5O2的电压平台相对较高(当0.25≤x≤0.5), 而且在Li嵌/脱时, LixNi0.5Co0.5O2的结构变化相对较小; Co离子的掺入, 减小了NiO6八面体的畸变度, 使材料的电化学稳定性得以提高. 在钴掺杂镍酸锂体系中, NiO6和CoO6具有相互的稳定作用.  相似文献   

11.
通过共沉淀法制备锂离子电池富锂锰基正极材料Li1.2Mn0.534Ni0.133Co0.133O2,并对其进行AlF3包覆。实验结果表明,通过AlF3包覆,材料的电化学性能得到明显提高。在0.2C下,包覆前材料的首次放电比容量为253 mAh.g-1,首次充放电效率仅为88.8%。经过AlF3包覆,材料的首次放电比容量提高到294 mAh.g-1,首次充放电效率高达96.4%。同样,在1.0C下循环50次,未包覆材料的放电比容量由225 mAh.g-1降到185 mAh.g-1,容量保持率仅为82.2%。经过AlF3包覆,材料的放电比容量由230mAh.g-1仅降为222 mAh.g-1,容量保持率高达96.5%。  相似文献   

12.
采用两步固相反应合成了锂、铁双位掺杂的锂离子电池正极材料Li0.99Nb0.01Fe1-xMgxPO4/C(x=0,0.01,0.02,0.03,0.04)。通过X射线衍射(XRD)、扫描电镜(SEM)以及恒电流充放电测试,研究了复合材料的晶体结构、形貌以及电化学性能。实验结果表明,制备的Li0.99Nb0.01Fe1-xMgxPO4/C(x=0,0.01,0.02,0.03,0.04)为纯相,掺杂适量的Nb5+、Mg2+离子可减小材料的晶粒尺寸,当Nb离子掺杂量为1mol%、Mg离子掺杂量为3mol%时,Li0.99Nb0.01Fe0.97Mg0.03PO4/C的电化学性能最佳。室温下,0.2C、1C、2C、4C(1C=170mA·g-1)倍率充放电其首次放电比容量分别为153.7、149.7、144.6、126.4mAh·g-1,即使在8C倍率下放电其放电比容量也有92.2mAh·g-1,并表现出良好的循环性能。  相似文献   

13.
采用水基流变相辅助的固相法,以异质碳蔗糖和石墨为碳源,合成了LiMn0.8Fe0.2PO4/C复合材料,研究了不同石墨加入方式对所制复合材料电化学性能的影响,并对所制备的LiMn0.8Fe0.2PO4/C复合材料进行了X射线衍射(XRD)、N2吸附-脱附测试、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等表征。结果表明,不同石墨包覆工艺对材料结构和电化学性能具有显著影响。前驱体煅烧后再加入石墨获得的样品纯度高,形貌呈均一的椭圆形,在0.1C下的放电比容量为149 mAh·g-1,达到其理论比容量的87%;在5C下最大的放电比容量为133 mAh·g-1;在2C倍率下经过300次循环后比容量维持在127 mAh·g-1,衰减率仅为1.9%,表现出了优良的循环稳定性。  相似文献   

14.
本文以LiOH.H2O、NH4VO3、H3PO4和柠檬酸为原料,采用溶胶-喷雾干燥法制备Li3V2(PO4)3/C正极材料,对比了喷雾前驱体直接煅烧与机械活化后煅烧的样品的结构、形貌及其电化学性能。采用XRD、SEM、BET和振实密度测试等对样品的结构、形貌等进行了表征;采用恒流充放电、CV和EIS等手段考察了材料的电化学性能。结果表明,溶胶-喷雾干燥得到的样品为多孔球壳形,其壳体由厚度为100 nm左右的纳米片组成,经机械活化后煅烧保持保持了其纳米片结构,其结晶度与振实密度改善较明显,电化学性能较优异。0.1C放电比容量为123.6 mAh.g-1,10C和20C高倍率放电比容量还高达107.8和106.0 mAh.g-1。电化学阻抗结果表明,由该方法制备的样品具有较小的电荷转移阻抗。  相似文献   

15.
应用简单的高温固相烧结法合成了Ti掺杂改性的Li_2MnO_3材料。电子扫描显微镜、X射线衍射以及X射线光电子能谱分析表明Ti元素取代Mn离子掺入到Li_2MnO_3晶格中,且掺杂能有效地抑制一次颗粒的团聚。电化学阻抗和恒流充放电测试结果表明,在2.0~4.6 V的电压窗口下,掺杂改性的样品Li_2Mn_(0.97)Ti_(0.03)O_3的首圈放电比容量达到209 m Ah·g~(-1),库仑效率为99.5%,循环40圈后容量保持率为94%;当电流密度增大到400 m A·g~(-1)时,掺杂改性的样品仍然可以放出120 m Ah·g~(-1)比容量,远高于同等电流密度下未掺杂的Li_2MnO_3原粉的比容量(52 m Ah·g~(-1))。Ti掺杂可有效地改善Li_2MnO_3的循环稳定性和倍率性能,有利于促进该材料的商业化应用。  相似文献   

16.
应用简单的高温固相烧结法合成了Ti掺杂改性的Li2MnO3材料。电子扫描显微镜、X射线衍射以及X射线光电子能谱分析表明Ti元素取代Mn离子掺入到Li2MnO3晶格中,且掺杂能有效地抑制一次颗粒的团聚。电化学阻抗和恒流充放电测试结果表明,在2.0~4.6 V的电压窗口下,掺杂改性的样品Li2Mn0.9Ti0.03O3的首圈放电比容量达到209 mAh·g-1,库仑效率为99.5%,循环40圈后容量保持率为94%;当电流密度增大到400 mA·g-1时,掺杂改性的样品仍然可以放出120 mAh·g-1比容量,远高于同等电流密度下未掺杂的Li2MnO3原粉的比容量(52 mAh·g-1)。Ti掺杂可有效地改善Li2MnO3的循环稳定性和倍率性能,有利于促进该材料的商业化应用。  相似文献   

17.
锂离子电池具有比能量高、功率大、使用寿命长、无记忆效应、性能价格比高等优点,从而成为可充式电源的主要选择对象.锰由于资源丰富、价廉、环境友好等优点,使锰酸锂(LiMn2O4)成为最有希望取代钴酸锂的正极材料.但锰酸锂的放电容量相对较低,结构欠稳定,容量衰减严重,作为正极材料还无法与钴酸锂相比,近年来做了大量的研究工作以改善它的电化学性能[1~6].最近Youngjoon Shin等研究发现[7]用少量的Li与Ni共同替代LiMn2O4中的Mn得到的LiMn2-2yLiyNiyO4的电化学性能要优于单元素替代的LiMn2-xMxO4(M=Li,Cr,Fe,Co,Ni)的电化学性能.  相似文献   

18.
Li3V2(PO4)3的溶胶-凝胶法合成及其性能研究   总被引:11,自引:0,他引:11  
以LiOH·H2O、NH4VO3、H3PO4和柠檬酸等为原料采用溶胶-凝胶法合成了锂离子二次电池正极材料磷酸钒锂(Li3V2(PO4)3)。考察了煅烧温度和配位剂种类等条件对产物组成及电化学性能的影响。研究了优化条件下制得样品的循环伏安、充放电性能和循环性能。0.1 C条件下,样品首次放电比容量达129.81 mAh·g-1,经过100次循环后容量几乎没有衰减,仍保持在128 mAh·g-1。X射线衍射研究表明合成单一Li3V2(PO4)3晶体所需温度比固相法低;并考察了循环20次后材料充电到各个单相的晶体结构,通过X射线衍射和最小二乘法计算给出了其晶胞参数变化过程,证实了循环嵌Li过程中晶体结构能够得到重现。  相似文献   

19.
以乙酸盐(乙酸锂、乙酸钠、乙酸钴、乙酸镍、乙酸锰等)为原材料,采用球磨辅助高温固相法制备Li1.0Na0.2Ni0.13Co0.13Mn0.54O2正极材料。借助XRD、SEM等表征材料的结构和形貌,利用循环伏安、恒流充放电、交流阻抗等方法研究材料的电化学性能。结果表明,钠的掺杂导致颗粒表面光滑度降低,形成Na0.77MnO2.05新相。0.05C活化过程中,掺钠样品和未掺钠样品首次放电比容量分别为258.4 mAh·g-1和215.8 mAh·g-1,库伦效率分别为75.2%和72.8%;2C放电比容量分别为116.3 mAh·g-1和106.2 mAh·g-1。研究发现,掺钠可减小首次充放电过程的不可逆容量,提高容量保持率;改善倍率性能与容量恢复特性;降低SEI膜阻抗和电荷转移阻抗;掺钠后样品首次循环就可以基本完成Li2MnO3组分向稳定结构的转化,而未掺杂的样品需要两次循环才能逐步完成该过程;XPS结果表明,掺钠样品中Ni2+、Co3+、Mn4+所占比例明显提高,改善了样品的稳定性和电化学性能;循环200次后的XRD结果表明掺钠与未掺钠材料在脱嵌锂反应中的相变化过程基本一致,良好有序的层状结构遭到破坏是循环过程中容量衰减的主要原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号