首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
以工业品TiO2粉末为光催化剂,研究其对乙酸的光催化降解过程的影响因素。实验结果表明,TiO2光催化剂用量、溶液初始pH值、溶液温度以及污染物初始浓度等因素,对光催化降解乙酸具有显著的影响。在10~55 mg/L的浓度范围内,乙酸的光催化降解可用L-H动力学模型来描述。  相似文献   

2.
纳米TiO2气相光催化降解丙酮   总被引:2,自引:0,他引:2  
以纳米TiO2(产品型号为P25)为光催化剂,玻璃片为栽体,在SGY—1型多功能光催化反应器中对气相丙酮的光催化降解反应进行了研究.结果表明:随着反应体系中P25光催化剂用量的增加,丙酮的降解率逐渐增大;而P25用量达到一定值后,丙酮降解率略有降低,且用量为460mg,即栽体上P25的面密度为1mg/cm^2时,紫外光(UV)辐照1.5h后,丙酮的降解率最高,达92.7%;无催化剂存在时,丙酮几乎不发生光解;反应体系中水分子的存在及UV强度的提高均会加快丙酮的光催化反应速率,而采用同一催化剂降解反应操作6次后,催化剂有一定程度失活,表现为丙酮的光催化降解速率明显下降.  相似文献   

3.
用XRD表征了TiO2的晶体形态,并用紫外可见光广度计研究了其对紫外光的吸收.通过研究TiO2的添加量和甲基橙的初始浓度对甲基橙的降解速率的影响,得出最佳实验条件为TiO2的添加量2.5g/L,甲基橙的初始浓度12.25mg/L.用光还原法在TiO2上沉积Ag后,催化剂的光催化活性大大提高.  相似文献   

4.
纳米TiO2光催化活性及其应用   总被引:3,自引:0,他引:3  
纳米TiO2作为光催化环境材料能有效降解多种对环境有害的污染,使有害物质矿化为CO2,H2O及其他无机小分子物质,因此可用于废水处理、空气净化以及杀菌除臭,本文综述了纳米级TiO2的制备及其光催化的机理,扼要介绍了纳米TiO2光催化反应在农药、医药、催化剂(化工)、环境工程等各方面的研究进展及应用前景。  相似文献   

5.
利用负载型纳米TiO2作为光催化剂对水中微量二氯乙烷进行紫外光催化降解处理。研究表明二氯乙烷光催化降解属表观一级反应动力学过程。不同的二氯乙烷初始浓度、光强和催化剂用量等因素对二氯乙烷的光催化降解具有不同的效果。初始浓度在4.821—22.838mg/L范围内,随着初始浓度的增大,二氯乙烷光催化降解的反应速率常数持续增大;光强的平方根与反应速率常数呈直线相关;随催化剂用量的增加,反应速率常数呈增大趋势。  相似文献   

6.
纳米TiO2对有机污染物的光催化降解机理及发展趋势   总被引:8,自引:0,他引:8  
光催化降解有机污染物消除其对环境的污染是目前环境领域中的新兴研究课题.通常情况下,纳米二氧化钛只能在紫外光范围内降解某些有机物.作者提出了通过施主半导化掺杂的方式使纳米二氧化钛在可见光范围具有光催化降解有机污染物的能力,并介绍了纳米二氧化钛光催化降解有机污染物的机理及把它应用于消除有机农药残余污染的研究进展和发展趋势.  相似文献   

7.
采用溶胶-凝胶法,以钛酸丁酯为原料在酸浸蚀的A l片上制备了纳米级的TiO2薄膜光催化剂,并用XRD、SEM等技术对薄膜进行表征.研究了在紫外光照射下,负载型TiO2/A l催化剂对丙酮的光催化降解行为.表明,将TiO2制备成负载型纳米TiO2/A l薄膜,可有效地抑制TiO2在高温下由锐钛矿相到金红石相的转变,提高了TiO2的光催化活性.  相似文献   

8.
以钛酸四丁酯、乙醇等为原料,采用凝胶-溶胶法制得纳米TiO2,研究了纳米TiO2光催化降解活性艳蓝KNR、活性艳红K2G、活性翠蓝KGL和活性GR黑4种染料的降解效果.实验结果表明:TiO2对4种染料具有显著的光催化降解作用.同时分析了TiO2的投加量、溶液的初始浓度等因素对染料光催化降解效率的影响.  相似文献   

9.
掺杂Zn2+纳米TiO2光催化降解亚甲基蓝   总被引:1,自引:0,他引:1  
印染废水治理是水系环境治理的重点,而亚甲基蓝是印染废水中典型的有机污染物。本研究选用掺杂Zn2+的纳米TiO2作为光催化剂对亚甲基蓝进行降解研究。XRD谱图分析表明,Zn2+的掺入可改变纳米TiO2锐钛矿型和金红石型的组成。制备工艺参数对样品光催化降解亚甲基蓝的活性具有很大影响,纯TiO2样品在450℃焙烧时的活性较其他温度的高;而掺杂Zn2+的样品则在500℃焙烧时的光催化活性相对最佳。催化剂的加入量过高或过低都不利于光催化活性的提高,催化剂的加入量为1g/L时,光催化剂对亚甲基蓝的降解效果最好;Zn2+掺入量为0.5%时,掺杂粉体的光催化活性相对较高。随着掺杂量的进一步增加,光催化活性降低。被降解有机物浓度过高时,紫外光较难到达催化剂表面,光的利用率降低,导致催化剂活性降低。亚甲基蓝的初始浓度为5mg/L时的降解速率较快。  相似文献   

10.
介绍了TiO2光催化的基本原理以及在环境污染物光催化降解方面的应用,阐述了TiO2光催化体系的发展趋势。引用文献28篇。  相似文献   

11.
通过实验证实了利用二氧化钛作为催化剂光降解地下水中六六六的可行性. 讨论了光照时间、 光照强度、 地下水pH值、 温度等因素对降解效果的影响. 由正交实验确定出最佳降解条件: 8 W紫外光灯管照射、 光照时间为30 min、 地下水pH=5、 温度为14 ℃, 降解率为47.96%, 考察了Fe3+,Mn2+对光降解效果的影响.  相似文献   

12.
TiO2薄膜光催化降解二氯乙酸和三氯乙酸水溶液   总被引:1,自引:0,他引:1  
用常压化学气相沉积法镀TiO2薄膜,以紫外灯为光源,对二氯乙酸和三氯乙酸溶液进行光催化降解,并证实了此过程符合一级反应动力学方程。结果表明:卤代度以及不同的半导体化合物底物均对二氯乙酸和三氯乙酸溶液的降解有影响,卤代度低的二氯乙酸比卤代度高的三氯乙酸降解效果要好;同样条件下半导体的带隙能越低,降解效果越好。  相似文献   

13.
以纳米二氧化钛为光催化剂,研究了溶液pH值,TiO2投加量,H2O2用量及染料起始浓度对光催化降解活性艳兰KN-R动力学的影响.结果表明,TiO2光催化降解活性艳兰KN-R的反应遵循准一级反应动力学方程,且表观反应速率常数随溶液pH值的升高及染料起始浓度的降低而增大;TiO2和H2O2的投加量均存在一个最佳值,在本实验条件下,它们分别为0.5 g.l-1和2.0×10-2mol.l-1,低于或超过该值都会导致降解速率的下降.  相似文献   

14.
光催化降解甲苯的研究   总被引:1,自引:0,他引:1  
本文以TiO2粉末作为光催化剂,研究光降解甲苯的可行性.结果表明,375W中压汞灯照射40min,甲苯被完全光催化降解.同时还研究了光催化剂TiO2的用量,外加H2O2、Cu2、Na离子等因素对甲苯光催化降解的影响,并从反应机理的角度给予解释。  相似文献   

15.
纳米TiO2是一种高效节能的光催化功能材料.文章探讨了纳米TiO2晶型、粒子尺寸、表面贵金属沉积、金属离子掺杂、半导体的复合、表面羟基、表面结构等因素对TiO2光催化活性的影响.  相似文献   

16.
探讨了以微量银离子为光化学反应的探针,依据金属离子光催化还原反应评价催化剂的光催化活性的方法.选择晶粒度为25nm的锐钛矿二氧化钛为研究对象,研究了紫外光照射下此催化还原反应的反应动力学特性,考察了二氧化钛浓度和银离子浓度对光催化反应速率的影响,确定了适合该评价方法的优化操作条件,并通过TEM和XRD等手段对反应后的固体颗粒物进行了表征.结果表明,在254nm的紫外光照射下,二氧化钛光催化还原银离子具有一级反应动力学特征,水溶液中的银离子在二氧化钛表面发生还原生成单质银.评价二氧化钛活性的优化操作条件为二氧化钛浓度为0.4g/L,银离子初始浓度为10~15mg/L时.检测了4种不同粒径二氧化钛的光催化活性,结果表明银离子适合作为光催化反应的探针.  相似文献   

17.
近年来蓝藻水华现象日益严重,甚至威胁了人类饮用水的安全.传统水处理技术对微囊藻毒素去除效果不明显,新型降解技术亟待研究.本文概述了二氧化钛系列的光催化剂的一些研究进展,并提出了未来光催化氧化法降解微囊藻毒素的主要研究方向.  相似文献   

18.
采用溶剂热法,以钛酸丁酯为前驱体制,以无水乙醇、异丙醇、正丁醇、无水乙醇+NaF粉末为溶剂制备锐钛矿型TiO2粉体。采用XRD,TEM,粒度分析仪等手段,对TiO2的晶相、微观形貌和性能进行表征分析。结果表明:本次实验合成的TiO2均为锐钛型,其晶体形貌随着溶剂的不同发生了很大的改变。在溶剂相同的条件下,加入NaF后的形貌有更明显改变。最后对TiO2的降解次甲基蓝进行了探讨。TiO2提高了对次甲基蓝降解率,尤其是氟掺杂的TiO2降解率最高。  相似文献   

19.
采用天然染料提取液,添加碱和Ti O2制备复合光敏剂,利用紫外可见分光光度计(UV-Vis)测试天然染料的吸收曲线,筛选出吸收峰较大、吸光效果较强的天然染料光敏剂.对添加复合光敏剂的醋酸纤维薄膜进行光催化降解测试和差热-热重(DSC-TG)以及扫描电镜(SEM)的表征.结果表明:紫草、紫苏天然染料在可见光区域的吸收较好,且两者混合后,吸收峰线性叠加,吸光度增强;天然染料添加Na OH后,吸收峰增强并发生红移;将Ti O2加入紫草和紫苏的碱性提取液中,复合光敏剂对醋酸纤维薄膜的光催化降解效果进一步提高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号