首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Starting from the exponential Euler polynomials discussed by Euler in “Institutions Calculi Differentialis,” Vol. II, 1755, the author introduced in “Linear operators and approximation,” Vol. 20, 1972, the so-called exponential Euler splines. Here we describe a new approach to these splines. Let t be a constant such that t=|t|eiα, −π<α<π,t≠0,t≠1.. Let S1(x:t) be the cardinal linear spline such that S1(v:t) = tv for all v ε Z. Starting from S1(x:t) it is shown that we obtain all higher degree exponential Euler splines recursively by the averaging operation . Here Sn(x:t) is a cardinal spline of degree n if n is odd, while is a cardinal spline if n is even. It is shown that they have the properties Sn(v:t) = tv for v ε Z.  相似文献   

2.
Consider the permanence and global asymptotic stability of models governed by the following Lotka-Volterra-type system:
, with initial conditions
xi(t) = φi(t) ≥ o, tt0, and φi(t0) > 0. 1 ≤ in
. We define x0(t) = xn+1(t)≡0 and suppose that φi(t), 1 ≤ in, are bounded continuous functions on [t0, + ∞) and γi, αi, ci > 0,γi,j ≥ 0, for all relevant i,j.Extending a technique of Saito, Hara and Ma[1] for n = 2 to the above system for n ≥ 2, we offer sufficient conditions for permanence and global asymptotic stability of the solutions which improve the well-known result of Gopalsamy.  相似文献   

3.
Gaussian radial basis functions (RBFs) have been very useful in computer graphics and for numerical solutions of partial differential equations where these RBFs are defined, on a grid with uniform spacing h, as translates of the “master” function (x;α,h)exp(-[α2/h2]x2) where α is a user-choosable constant. Unfortunately, computing the coefficients of (x-jh;α,h) requires solving a linear system with a dense matrix. It would be much more efficient to rearrange the basis functions into the equivalent “Lagrangian” or “cardinal” basis because the interpolation matrix in the new basis is the identity matrix; the cardinal basis Cj(x;α,h) is defined by the set of linear combinations of the Gaussians such that Cj(kh)=1 when k=j and Cj(kh)=0 for all integers . We show that the cardinal functions for the uniform grid are Cj(x;h,α)=C(x/h-j;α) where C(X;α)≈(α2/π)sin(πX)/sinh(α2X). The relative error is only about 4exp(-2π2/α2) as demonstrated by the explicit second order approximation. It has long been known that the error in a series of Gaussian RBFs does not converge to zero for fixed α as h→0, but only to an “error saturation” proportional to exp(-π2/α2). Because the error in our approximation to the master cardinal function C(X;α) is the square of the error saturation, there is no penalty for using our new approximations to obtain matrix-free interpolating RBF approximations to an arbitrary function f(x). The master cardinal function on a uniform grid in d dimensions is just the direct product of the one-dimensional cardinal functions. Thus in two dimensions . We show that the matrix-free interpolation can be extended to non-uniform grids by a smooth change of coordinates.  相似文献   

4.
If E is an ordered set, we study the processes Yt, t E, for which the vectorial spaces t generated by all the conditional expectations E(Ysβ t) for st have finite dimensions d(t) ≤ N. ( t is some convenient filtration.) We first develop a geometrical approach in the general situation and give a “Goursat's representation” Yt = Σfi(t)Mi(t), where the Mi(t) are martingales. We then restrict us to the cases E = or E = 2 and give representations of the processes by the mean of stochastic integrals of “Goursat's kernels.” The special case when Yt is the solution of a differential equation is considered.  相似文献   

5.
Given a sequence of real or complex coefficients ci and a sequence of distinct nodes ti in a compact interval T, we prove the divergence and the unbounded divergence on superdense sets in the space C(T) of the simple quadrature formulas ∝Tx(t)du(t) = Qn(x) + Rn(x) and ∝Tw(t)x(t)dt = Qn(x) + Rn(x), where Qn(x)=∑i=1mn cix(ti), ε C(T).The divergence (not certainly unbounded) for at most one continuous function of the first simple quadrature formula, with mn = n and u(t) = t, was established by P. J. Davis in 1953.  相似文献   

6.
We prove existence and uniqueness of the solution Xεt of the SDE, Xεt = εBt + ∫t0uq −1 ε(s, Xεt) ds, where Xεt is a one-dimensional process and uε(t, x) the density of Xεt (ε > 0, q > 1). We show that the closure of (Xεt; 0 ≤ t ≤ 1) with respect to Hölder norm, when ε goes to 0, is a.s. equal to an explicit family of continuous functions. We obtain similar results, considering SDE′s where the drift coefficient is equal to ± sgn(x) u(t, x).  相似文献   

7.
We establish sufficient conditions for the persistence and the contractivity of solutions and the global asymptotic stability for the positive equilibrium N*=1/(a+∑i=0mbi) of the following differential equation with piecewise constant arguments:
where r(t) is a nonnegative continuous function on [0,+∞), r(t)0, ∑i=0mbi>0, bi0, i=0,1,2,…,m, and a+∑i=0mbi>0. These new conditions depend on a,b0 and ∑i=1mbi, and hence these are other type conditions than those given by So and Yu (Hokkaido Math. J. 24 (1995) 269–286) and others. In particular, in the case m=0 and r(t)≡r>0, we offer necessary and sufficient conditions for the persistence and contractivity of solutions. We also investigate the following differential equation with nonlinear delay terms:
where r(t) is a nonnegative continuous function on [0,+∞), r(t)0, 1−axg(x,x,…,x)=0 has a unique solution x*>0 and g(x0,x1,…,xm)C1[(0,+∞)×(0,+∞)××(0,+∞)].  相似文献   

8.
In this paper, we prove the invariance of Stepanov-like pseudo-almost periodic functions under bounded linear operators. Furthermore, we obtain existence and uniqueness theorems of pseudo-almost periodic mild solutions to evolution equations u(t)=A(t)u(t)+h(t) and on , assuming that A(t) satisfy “Acquistapace–Terreni” conditions, that the evolution family generated by A(t) has exponential dichotomy, that R(λ0,A()) is almost periodic, that B,C(t,s)ts are bounded linear operators, that f is Lipschitz with respect to the second argument uniformly in the first argument and that h, f, F are Stepanov-like pseudo-almost periodic for p>1 and continuous. To illustrate our abstract result, a concrete example is given.  相似文献   

9.
Let 2s points yi=−πy2s<…<y1<π be given. Using these points, we define the points yi for all integer indices i by the equality yi=yi+2s+2π. We shall write fΔ(1)(Y) if f is a 2π-periodic continuous function and f does not decrease on [yiyi−1], if i is odd; and f does not increase on [yiyi−1], if i is even. In this article the following Theorem 1—the comonotone analogue of Jackson's inequality—is proved. 1. If fΔ(1)(Y), then for each nonnegative integer n there is a trigonometric polynomial τn(x) of order n such that τnΔ(1)(Y), and |f(x)−πn(x)|c(s) ω(f; 1/(n+1)), x , where ω(f; t) is the modulus of continuity of f, c(s)=const. Depending only on s.  相似文献   

10.
Systems of linear nonautonomous delay differential equations are considered which are of the form yi(t) = ∑k = 1n0T bik(t, s) yk(ts) dηik(s) − ci(t) yi(t), where I = 1,…, n. Sufficient conditions are derived for both the asymptotic stability and the instability of the zero solution. The main result is found by a monotone technique using elementary methods only. Moreover, additional criteria are obtained by using the method of Lyapunov functionals.  相似文献   

11.
Let l be a generalized Orlicz sequence space generated by a modular (x) = ∑i − 0 iti¦), X = (ti), with s-convex functions i, 0 < s 1, and let Kw,j: R+R+ for j=0,1,2,…, w ε Wwhere is an abstract set of indices. Assuming certain singularity assumptions on the nonlinear kernel Kw,j and setting Twx = ((Twx)i)i = 0, with (Twx)i = ∑j = 0i Kw,ijtj¦) for x = (tj), convergence results: Twxx in l are obtained (both modular convergence and norm convergence), with respect to a filter of subsets of the set .  相似文献   

12.
In this paper, we present a method that allows one to obtain a number of sharp inequalities for expectations of functions of infinite-degree U-statistics. Using the approach, we prove, in particular, the following result: Let D be the class of functions f :R+R+ such that the function f(x+z)−f(x) is concave in xR+ for all zR+. Then the following estimate holds: for all fD and all U-statistics ∑1i1<<ilnYi1,…,il(Xi1,…,Xil) with nonnegative kernels Yi1,…,il :RlR+, 1ikn; iris, rs; k,r,s=1,…,l; l=0,…,m, in independent r.v.'s X1,…,Xn. Similar inequality holds for sums of decoupled U-statistics. The class D is quite wide and includes all nonnegative twice differentiable functions f such that the function f″(x) is nonincreasing in x>0, and, in particular, the power functions f(x)=xt, 1<t2; the power functions multiplied by logarithm f(x)= (x+x0)t ln(x+x0), 1<t<2, x0max(e(3t2−6t+2)/(t(t−1)(2−t)),1); and the entropy-type functions f(x)=(x+x0)ln(x+x0), x01. As an application of the results, we determine the best constants in Burkholder–Rosenthal-type inequalities for sums of U-statistics and prove new decoupling inequalities for those objects. The results obtained in the paper are, to our knowledge, the first known results on the best constants in sharp moment estimates for U-statistics of a general type.  相似文献   

13.
In this paper some upper bound for the error ∥ s-f is given, where f ε C1[a,b], but s is a so-called Hermite spline interpolant (HSI) of degree 2q ?1 such that f(xi) = s(xi), f′(rmxi) = s′(xi), s(j) (xi) = 0 (i = 0, 1, …, n; j = 2, 3, …, q ?1; n > 0, q > 0) and the knots xi are such that a = x0 < x1 < … < xn = b. Necessary and sufficient conditions for the existence of convex HSI are given and upper error bound for approximation of the function fε C1[a, b] by convex HSI is also given.  相似文献   

14.
Consider a Hilbert space equipped with a time-structure, i.e., a resolution E of the identity on defined on subsets of some linearly ordered set Λ. For which x and y in is it possible to find a causal (time respecting) compact operator T, so that Tx = y? When T is required to be a Hilbert-Schmidt operator and (Λ, E) is sufficiently regular, this question is answered in terms of the “time-densities” of x and y. The condition is that the integral ∝gLμx({s t})−1 dμy(t) should be finite, where μx and μy are the measures on Λ given by μx(Ω) = ¦|E(Ω)x¦|2 and μy(Ω) = ¦|E(Ω)y¦|2. Further a solution is given for the related problem of minimizing the sum of ¦|Txy¦|2 and the squared Hilbert-Schmidt norm ¦|R¦|22 of T.  相似文献   

15.
The main purpose of this article is to establish nearly optimal results concerning the rate of almost everywhere convergence of the Gauss–Weierstrass, Abel–Poisson, and Bochner–Riesz means of the one-dimensional Fourier integral. A typical result for these means is the following: If the function f belongs to the Besov spaceBsp, p, 1<p<∞, 0<s<1, thenTmtf (x)−f(x)=ox(ts) a.e. ast→0+.  相似文献   

16.
We give a direct formulation of the invariant polynomials μGq(n)(, Δi,;, xi,i + 1,) characterizing U(n) tensor operators p, q, …, q, 0, …, 0 in terms of the symmetric functions Sλ known as Schur functions. To this end, we show after the change of variables Δi = γi − δi and xi, i + 1 = δi − δi + 1 thatμGq(n)(,Δi;, xi, i + 1,) becomes an integral linear combination of products of Schur functions Sα(, γi,) · Sβ(, δi,) in the variables {γ1,…, γn} and {δ1,…, δn}, respectively. That is, we give a direct proof that μGq(n)(,Δi,;, xi, i + 1,) is a bisymmetric polynomial with integer coefficients in the variables {γ1,…, γn} and {δ1,…, δn}. By making further use of basic properties of Schur functions such as the Littlewood-Richardson rule, we prove several remarkable new symmetries for the yet more general bisymmetric polynomials μmGq(n)1,…, γn; δ1,…, δm). These new symmetries enable us to give an explicit formula for both μmG1(n)(γ; δ) and 1G2(n)(γ; δ). In addition, we describe both algebraic and numerical integration methods for deriving general polynomial formulas for μmGq(n)(γ; δ).  相似文献   

17.
Let {X(t): t [a, b]} be a Gaussian process with mean μ L2[a, b] and continuous covariance K(s, t). When estimating μ under the loss ∫ab ( (t)−μ(t))2 dt the natural estimator X is admissible if K is unknown. If K is known, X is minimax with risk ∫ab K(t, t) dt and admissible if and only if the three by three matrix whose entries are K(ti, tj) has a determinant which vanishes identically in ti [a, b], i = 1, 2, 3.  相似文献   

18.
Let F(s, t) = P(X > s, Y > t) be the bivariate survival function which is subject to random censoring. Let be the bivariate product limit estimator (PL-estimator) by Campbell and Földes (1982, Proceedings International Colloquium on Non-parametric Statistical Inference, Budapest 1980, North-Holland, Amsterdam). In this paper, it was shown that
, where {ζi(s, t)} is i.i.d. mean zero process and Rn(s, t) is of the order O((n−1log n)3/4) a.s. uniformly on compact sets. Weak convergence of the process {n−1 Σi = 1n ζi(s, t)} to a two-dimensional-time Gaussian process is shown. The covariance structure of the limiting Gaussian process is also given. Corresponding results are also derived for the bootstrap estimators. The result can be extended to the multivariate cases and are extensions of the univariate case of Lo and Singh (1986, Probab. Theory Relat. Fields, 71, 455–465). The estimator is also modified so that the modified estimator is closer to the true survival function than in supnorm.  相似文献   

19.
Let denote the set of continuous n×n matrices on an interval . We say that is a nontrivial k-involution if where ζ=e-2πi/k, d0+d1++dk-1=n, and with . We say that is R-symmetric if R(t)A(t)R-1(t)=A(t), , and we show that if A is R-symmetric then solving x=A(t)x or x=A(t)x+f(t) reduces to solving k independent d×d systems, 0k-1. We consider the asymptotic behavior of the solutions in the case where . Finally, we sketch analogous results for linear systems of difference equations.  相似文献   

20.
Let I be a finite interval, r and ρ(t)=dist{t, ∂I}, tI. Denote by Δs+Wrpα, 0α<∞, the class of functions x on I with the seminorm x(r)ραLp1 for which Δsτx, τ>0, is nonnegative on I. We obtain two-sided estimates of the Kolmogorov widths dn(Δs+Wrpα)Lq and of the linear widths dn(Δs+Wrpα)linLq, s=0, 1, …, r+1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号