首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 476 毫秒
1.
2.
We apply the confluent Heun functions to study the resonant frequencies (quasispectrum), the Hawking radiation and the scattering process of scalar waves, in a class of spacetimes, namely, the ones generated by a Kerr–Newman–Kasuya spacetime (dyon black hole) and a Reissner–Nordström black hole surrounded by a magnetic field (Ernst spacetime). In both spacetimes, the solutions for the angular and radial parts of the corresponding Klein–Gordon equations are obtained exactly, for massive and massless fields, respectively. The special cases of Kerr and Schwarzschild black holes are analyzed and the solutions obtained, as well as in the case of a Schwarzschild black hole surrounded by a magnetic field. In all these special situations, the resonant frequencies, Hawking radiation and scattering are studied.  相似文献   

3.
In this paper we calculate the center-of-mass energy of two colliding test particles near the rotating and non-rotating Horava–Lifshitz black hole. For the case of a slowly rotating KS solution of Horava–Lifshitz black hole we compare our results with the case of Kerr black holes. We confirm the limited value of the center-of-mass energy for static black holes and unlimited value of the center-of-mass energy for rotating black holes. Numerically, we discuss temperature dependence of the center-of-mass energy on the black hole horizon. We obtain the critical angular momentum of particles. In this limit the center-of-mass energy of two colliding particles in the neighborhood of the rotating Horava–Lifshitz black hole could be arbitrarily high. We found appropriate conditions where the critical angular momentum could have an orbit outside the horizon. Finally, we obtain the center-of-mass energy corresponding to this circle orbit.  相似文献   

4.
In this work, we have studied accretion of the dark energies in new variable modified Chaplygin gas (NVMCG) and generalized cosmic Chaplygin gas (GCCG) models onto Schwarzschild and Kerr?CNewman black holes. We find the expression of the critical four velocity component which gradually decreases for the fluid flow towards the Schwarzschild as well as the Kerr?CNewman black hole. We also find the expression for the change of mass of the black hole in both cases. For the Kerr?CNewman black hole, which is rotating and charged, we calculate the specific angular momentum and total angular momentum. We showed that in both cases, due to accretion of dark energy, the mass of the black hole increases and angular momentum increases in the case of a Kerr?CNewman black hole.  相似文献   

5.
The geodesic properties of the stationary vacuum string solution in (4+1) dimensions with momentum flow along the string direction are analyzed by using Hamilton-Jacobi method. The geodesic motions show distinct properties from those of the static one. Especially, any freely falling particle can not arrive at the horizon or singularity. To get into the horizon, a particle need to follow a non-geodesic trajectory. There exist stable null circular orbits and bouncing timelike and null geodesics. In the asymptotic geometry, some geodesics will be repelled by the string contrary to the case of Kerr-Neumann black hole. The light bending effect will be minimized at an impact parameter determined by the angular momentum and energy.  相似文献   

6.
An observer situated anywhere but in the equatorial plane of a high angular momentum Kerr field cannot see the ring singularity. In the visual field of such an observer, what demarcates his own universe from that through the ring? The projections onto a certain submanifold of the null geodesics which pass through a point on the symmetry axis of a specific Kerr field are examined numerically. All the distinct projections are obtained by varying one parameter, essentially the quadratic Killing tensor constant. Various interesting features of the geodesics emerge. Through the ring is a region in which there exist closed time-like curves and which can be used to construct closed time-like curves through any non-singular point of the manifold. Only geodesies of negative angular momentum can enter this region.  相似文献   

7.
An observer situated anywhere but in the equatorial plane of a high angular momentum Kerr field cannot see the ring singularity. In the visual field of such an observer, what demarcates his own universe from that through the ring?The projections onto a certain submanifold of the null geodesics which pass through a point on the symmetry axis of a specific Kerr field are examined numerically. All the distinct projections are obtained by varying one parameter, essentially the quadratic Killing tensor constant. Various interesting features of the geodesics emerge.Through the ring is a region in which there exist closed time-like curves and which can be used to construct closed time-like curves through any non-singular point of the manifold. Only geodesies of negative angular momentum can enter this region.  相似文献   

8.
In the first remark the catalogue of axisymmetric stationary horizons is completed by a subset of uncharged translation-symmetric horizons, which was ignored in the previous paper [5]. The subset consists of two one-parameter families: extreme Kerr horizon (a=m) and a more symmetric family. In the second remark the surface area, net angular momentum and net charges of a black hole are computed. It turns out that the four invariant functionsA, B, C, D used in [5] to classify the horizons describe, at least formally and up to a constant factor:A the profile of the black hole surface,B the surface density of angular momentum andC cosD, C sinD the surface density of electric and magnetic charge. In the third remark a simplified model of a black hole surrounded by a charged matter shell is found to satisfy a sort of generalized “no-hair-conjecture”. An example of a non-Kerr-Newman field around a horizon is provided; the magnetic field in it is hoped to have some astrophysical importance.  相似文献   

9.
Geodesics structure of static charged black holes for dilaton gravity is constructed. In particular, circular and radial geodesics for charged and uncharged test particles are studied. Various possibilities are discussed for range of parameters for the black hole and the test particles. The orbits of the particles with angular momentum are presented.  相似文献   

10.
The area of the event horizon round a rotating black hole will increase in the presence of a non-axisymmetric or time dependent perturbation. If the perturbation is a matter field, the area increase is related to the fluxes of energy and of angular momentum into the black hole in such a way as to maintain the formula for the area in the Kerr solution. For purely gravitational perturbations one cannot define angular momentum locally but one can use the area increase and the expression for area in terms of mass and angular momentum to calculate the slowing down of a black hole caused by a non-axisymmetric distribution of matter at a distance. It seems that the coupling between the rotation of a black hole and the orbit of a particle going round it can be significant if the angular momentum of the black hole is close to its maximum possible value and if the angular velocity of the particle is nearly equal to that of the black hole.Alfred P. Sloan Research Fellow, supported in part by the National Science Foundation.  相似文献   

11.
In this work, we study the optical properties of a class of magnetically charged rotating black hole spacetimes. The black holes in question are assumed to be immersed in the quintessence field, and subsequently, the resulting black hole shadows are expected to be modified by the presence of dark energy. We investigate the photon region and the black hole shadow, especially their dependence on the relevant physical conditions, such as the quintessence state parameter, angular momentum, and magnetic charge magnitude. The photon regions depend sensitively on the horizon structure and possess intricate features. Moreover, from the viewpoint of a static observer, we explore a few observables, especially those associated with the distortion of the observed black hole shadows.  相似文献   

12.
We investigate periodic orbits and zoom-whirl behaviors around a Kerr Sen black hole with a rational number q in terms of three integers(z,w,v),from which one can immediately read off the number of leaves(or zooms),the ordering of the leaves,and the number of whirls.The characteristic of zoom-whirl periodic orbits is the precession of multi-leaf orbits in the strong-field regime.This feature is analogous to the counterpart in the Kerr space-time.Finally,we analyze the impact of the charge parameter b on the zoom-whirl periodic orbits.Compared to the periodic orbits around the Kerr black hole,it is found that typically lower energies are required for the same orbits in the Kerr Sen black hole.  相似文献   

13.
We investigate phase-plane analysis of general relativistic orbits in a gravitational field of the Reissner–Nordstr?m-type regular black hole spacetime. We employ phase-plane analysis to obtain different phase-plane diagrams of the test particle orbits by varying charge q and dimensionless parameter β, where β contains angular momentum of the test particle. We compute numerical values of radii for the innermost stable orbits and corresponding values of energy required to place the test particle in orbits. Later on, we employ similar analysis on an Ayón–Beato–García(ABG) regular black hole and a comparison regarding key results is also included.  相似文献   

14.
Hawking radiation can be viewed as a process of quantum tunnelling near black hole horizon. When a particle with angular momentum tunnels across the event horizon of Schwarzschild black hole, the black hole will change into a Kerr black hole. The emission rate of the massless particles with angular momentum is calculated, and the result is consistent with an underlying unitary theory.  相似文献   

15.
ROTATING RINDLER SPACE TIME WITH CONSTANT ANGULAR VELOCITY   总被引:2,自引:0,他引:2       下载免费PDF全文
王永成 《中国物理》2000,9(5):329-332
A new space time metric is derived from Kerr metric if its mass and location approach to infinite in an appropriate way. The new space-time is an infinitesimal neighborhood nearby one of the two horizon poles of an infinite Kerr black hole. In other words, it is the second order infinitesimal neighborhood nearby one of the two horizon poles of a Kerr black hole. It is flat and has event horizon and infinite red shift surface. We prove that it is a rotating Rindler space time with constant angular velocity.  相似文献   

16.
Ashoke Sen 《Nuclear Physics B》1995,440(3):421-440
We construct the general electrically charged, rotating black hole solution in the heterotic string theory compactified on a six-dimensional torus and study its classical properties. This black hole is characterized by its mass, angular momentum, and a 28-dimensional electric charge vector. We recover the axion-dilaton black holes and Kaluza-Klein black holes for special values of the charge vector. For a generic black hole of this kind, the 28-dimensional magnetic dipole moment vector is not proportional to the electric charge vector, and we need two different gyromagnetic ratios for specifying the relation between these two vectors. We also give an algorithm for constructing a 58 parameter rotating dyonic black hole solution in this theory, characterized by its mass, angular momentum, a 28-dimensional electric charge vector and a 28-dimensional magnetic charge vector. This is the most general asymptotically flat black hole solution in this theory consistent with the no-hair theorem.  相似文献   

17.
The regular Hayward model describes a non-singular black hole space-time. By analyzing the behaviors of effective potential and solving the equation of orbital motion, we investigate the time-like and null geodesics in the regular Hayward black hole space-time. Through detailed analyses of corresponding effective potentials for massive particles and photons, all possible orbits are numerically simulated. The results show that there may exist four orbital types in the time-like geodesics structure: planetary orbits, circular orbits, escape orbits and absorbing orbits. In addition, when \(\ell \), a convenient encoding of the central energy density \(3/8\pi \ell ^{2}\), is 0.6M, and b is 3.9512M as a specific value of angular momentum, escape orbits exist only under \(b>3.9512M\). The precession direction is also associated with values of b. With \(b=3.70M\) the bound orbits shift clockwise but counter-clockwise with \(b=5.00M\) in the regular Hayward black hole space-time. We also find that the structure of null geodesics is simpler than that of time-like geodesics. There only exist three kinds of orbits (unstable circle orbits, escape orbits and absorbing orbits).  相似文献   

18.
The motion of test particles in polar orbit about the source of the Kerr field of gravity is studied, using Carter's first integrals for timelike geodesies in the Kerr space-time. Expressions giving the angular coordinates of such particles as functions of the radial one are derived, both for the case of a rotating black hole as well as for that of a naked singularity.  相似文献   

19.
We discuss the feature of the magnetic field configuration arising from double counter oriented electric currentrings in the accretion disc around a Kerr black hole (BH). We discuss the relevant physical quantities corresponding to this configuration: (1) the power and torque transferred by the large-scale magnetic field, (2) the angular momentum and energy fluxes transferred from the BIt to the inner disc, (3) the radiation flux from the disc. In addition, we discuss the possibility that the closed magnetic field anchored at the disc probably evolves to the open magnetic field, which is helpful to produce the jet from the disc.  相似文献   

20.
Applying Parikh's quantum tunneling method, the tunneling characteristics of stationary Kaluza-Klein black hole is researched. The result shows that the tunneling rate across the event horizon of the black hole is relevant to the change of Bekenstein-Hawking entropy and the derived radiation spectrum deviates from pure thermal when the self-gravitation, energy conservation and angular momentum conservation are taken into consideration. Finally, we use the obtained results to reduce to stationary Kerr black hole and static Swarzschild black hole, and find that only ignoring the spectrum at higher energies the tunneling radiation spectrum is consistent with Hawking pure thermal one. PACS:97.60.Lf,04.70._s  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号