首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Screw conveyors are widely employed in industrial fields for conveying bulk materials. The shearer drum which uses the screw conveying principle is responsible for excavation and conveying coal particles onto the chain conveyor. Screw conveyor performance is affected by potential factors, such as the blade axial tilt angle and style, core shaft form and diameter. The effect of blade axial tilt angle on the conveying performance was investigated with the help of DEM. In the case of the screw conveyor, the mass flow rate, and particle axial velocity increased with increasing positive axial tilt angle, and declined with increasing negative axial tilt angle. In the case of the drum, the mass flow rate, particle axial velocity, and loading rate first increased and then decreased with increasing positive axial tilt angle, and decreased with increasing negative axial tilt angle. These results can be considered as a benchmark for screw conveyor and drum structural designs with axial tilt screw blades.  相似文献   

2.
Screw conveyors are extensively used in modern industry such as metallurgy, architecture and pharmaceutical due to their high-efficiency in the transportation of granular materials. And substantial efforts have been devoted to the study of the screw conveyors. Numerical method is an effective way to study screw conveyor. However, previous studies have mainly focused in the regime of spherical particles while the in-depth investigations for non-spherical particles that should be the most encountered in practical applications are still limited. In view of the above situations, discrete element method (DEM), which has been widely accepted in simulating the discrete systems, is utilized to investigate the conveying process of non-spherical particles in a horizontal screw conveyor, with particles being modeled by super-ellipsoids. In addition, a wear model called SIEM (Shear Impact Energy Model) is incorporated into DEM to predict the wear of screw conveyor. The DEM simulation results demonstrate that the particle shape is influential for the flow behaviors of particles and the wear of conveyor. The conveying performance evaluated quantitatively of both mass flow rate and power consumption is subsequently obtained to investigate the effect of sphericity of particle with different operation parameters. Moreover, particle collision frequency and collision energy consumption are acquired to investigate the possible particle breakage between particles and screw blade. The comparisons between particle–particle collision and particle–wall collision reveal that particles with large shape index have more possibility to be damaged in particle–wall impingement.  相似文献   

3.
The optimization of the drum structure is beneficial to improve the particle motion and mixing in rotary drums. In this work, two kinds of drum structures, Lacy cylinder drum (LC) and Lacy-lifters cylinder drum (LLC), are developed on the basic of cylinder drum to enhance the heat transfer area. The particle motion and mixing process are simulated by DEM method. Based on the grid independence and model validation, the contact number between particles and wall, particle velocity profile, thickness of active layer, particle exchange coefficient, particle concentration profile and mixing index are demonstrated. The influences of the drum structure and the operation parameters are further evaluated. The results show that the contact number between particles and wall is improved in LC and LLC compared to cylinder drum. The particle velocity in LC is higher than that in cylinder drum at high rotating speed, and the particle velocity of the particle falling region is significantly improved in LLC. Compared to cylinder drum and LC, the thickness of active layer in LLC is smaller, while the local particle mixing quality is proved to be the best in the active region. In addition, the particle exchange coefficients between static region and active region in the three drums are compared and LLC is found tending to weaken the particle flow. Besides, the fluctuations of particle concentration in the active region, static region, and boundary region are weakened in LLC, and the equilibrium state is reached earlier. In addition, the overall particle mixing performance in cylinder drum, LC and LLC is analyzed. The particle mixing performance in cylinder drum is the worst, while the difference in mixing quality of LC and LLC depends on the operation conditions.  相似文献   

4.
Experimental investigation of the interaction of internal flow with external flow around hollow airfoil NACA series in a low-speed wind tunnel was conducted and is presented in the paper. The region near the trailing edge of the hollow airfoil was studied in detail and measurements of velocity and turbulence intensities were performed with hot-wire anemometry. Determination of flow structure on the hollow airfoil was performed with computer-aided visualization. It can be concluded from the measurement analysis that higher values of velocities, lower turbulence intensities and a significant decrease of circulation effects on the suction side of the hollow blade were achieved, due to the introduction of internal flow. The results obtained on the hollow airfoil were applied on the rotating axial fan. Influence of the internal flow of the hollow blade on the flow field of the axial fan was studied. With the introduction of the internal flow a reduction of circulation effects on the fan hollow blade was achieved. Aerodynamic characteristic of the axial fan reached higher degree of total pressure difference and normalized efficiency through the entire fan working conditions.  相似文献   

5.
基于(势流)涡尾迹方法开发了水平轴风力机叶片气动性能分析程序,采用固定尾迹涡模型和自由尾迹模型分别对气动设计性能进行计算分析,得到风力机设计工况下的涡位置、诱导因子、功率系数及扭矩系数等气动性能参数,并与设计结果对比。结果表明,涡尾迹方法能够快速准确地计算风力机叶片气动性能参数,对风力机叶片气动分析,固定尾迹涡模型较自由尾迹模型计算时间短,具有较好的实用性。  相似文献   

6.
An experimental investigation is carried out to characterize the performance of thermoelectric modules used for electric power generation over a range of different resistance loads. The performance of a Peltier cell used as a thermoelectric generator is evaluated in terms of power output and conversion efficiency. The results show that a thermoelectric module is a promising device for waste heat recovery.  相似文献   

7.
In this study, discrete element method (DEM) was employed to simulate the movement of non-cohesive mono-dispersed particles in a V-blender along with particle-particle and particle-boundary interactions. To validate the model, DEM results were successfully compared to positron emission particle tracking (PEPT) data reported in literature. The validated model was then utilized to explore the effects of rotational speed and fill level on circulation intensity and axial dispersion coefficient of non-cohesive particles in the V-blender. The results showed that the circulation intensity increased with an increase in the rotational speed from 15 to 60 rpm. As the fill level increased from 20% to 46%, the circulation intensity decreased, reached its minimum value at a fill level of 34% for all rotational speeds, and did not change significantly at fill levels greater than 34%. The DEM results also revealed that the axial dispersion coefficient of particles in the V-blender was a linear function of the rotational speed. These trends were in good agreement with the experimentallv determined values reported bv previous researchers.  相似文献   

8.
A detailed experimental investigation of the effects of exit blade geometry on the part-load performance of low-head, axial flow propeller turbines is presented. Even as these turbines find important applications in small-scale energy generation using micro-hydro, the relationship between the layout of blade profile, geometry and turbine performance continues to be poorly characterized.The experimental results presented here help understand the relationship between exit tip angle, discharge through the turbine, shaft power, and efficiency. The modification was implemented on two different propeller runners and it was found that the power and efficiency gains from decreasing the exit tip angle could be explained by a theoretical model presented here based on classical theory of turbomachines. In particular, the focus is on the behaviour of internal parameters like the runner loss coefficient, relative flow angle at exit, mean axial flow velocity and net tangential flow velocity.The study concluded that the effects of exit tip modification were significant. The introspective discussion on the theoretical model’s limitation and test facility suggests wider and continued experimentation pertaining to the internal parameters like inlet vortex profile and exit swirl profile. It also recommends thorough validation of the model and its improvement so that it can be made capable for accurate characterization of blade geometric effects.  相似文献   

9.
10.
The effect of non-condensable gas on condensation in a highly rotating drum with a scraper is explored analytically. The formulation is first carried out generally, and then the application of the general formulation to the steam-air system gives heat transfer results for a wide range of operating conditions. It is found that a very small amount of non-condensable gas can induce a significant reduction in heat transfer. The reduction is accentuated at larger temperature differences, thinner condensate thickness and, to one's surprise, at higher operating pressures. By comparison, it is indicated that the present situation is more sensitive to non-condensable gas than forced convection condensation along a horizontal plate. Received on 14 August 1997  相似文献   

11.
This paper numerically studies the aerodynamic performance of a bird-like bionic flapping wing. The geometry and kinematics are designed based on a seagull wing,in which flapping, folding, swaying, and twisting are considered. An in-house unsteady flow solver based on hybrid moving grids is adopted for unsteady flow simulations. We focus on two main issues in this study, i.e., the influence of the proportion of down-stroke and the effect of span-wise twisting. Numerical results show that the proportion of downstroke is closely related to the efficiency of the flapping process. The preferable proportion is about 0.7 by using the present geometry and kinematic model, which is very close to the observed data. Another finding is that the drag and the power consumption can be greatly reduced by the proper span-wise twisting. Two cases with different reduced frequencies are simulated and compared with each other. The numerical results show that the power consumption reduces by more than 20%, and the drag coefficient reduces by more than 60% through a proper twisting motion for both cases. The flow mechanism is mainly due to controlling of unsteady flow separation by adjusting the local effective angle of attack. These conclusions will be helpful for the high-performance micro air vehicle(MAV) design.  相似文献   

12.
Several experiments were performed with a Kolsky Bar (Split Hopkinson Pressure Bar) device to investigate the dynamic axial buckling of cylindrical shells. The Kolsky Bar is a loading as well as a measuring device which can subject the shells to a fairly good square pulse. An attempt is made to understand the interaction between the stress wave and the dynamic buckling of cylindrical shells. It is suggested that the dynamic axial buckling of the shells, elastic or elasto-plastic, is mainly due to the compressive wave rather than the flexural or bending wave. The experimental results seem to support the two critical velocity theory for plastic buckling, withV c1 corresponding to an axisymmetric buckling mode andV c2 corresponding to a non-symmetric buckling mode. The project supported by National Natural Science Foundation of China  相似文献   

13.
Non-axisymmetric wake impact experiments were carried out after the best exciting frequency for a low speed axial compressor had been found by axisymmetric wake impact experiments. When the number and circumferential distribution of inlet guide vanes (IGV) are logical, the wakes of non-axisymmetric IGVs can exert beneficial unsteady exciting effect on their downstream rotor flow fields and improve the compressor's performance. In the present paper, four non-axisymmetric wake impact plans were found working better than the axisymmetric wake impact plan. Compared with the base plan, the best non-axisymmetric plan increased the compressor's peak efficiency, and the total pressure rise by 1.1 and 2%, and enhanced the stall margin by 4.4%. The main reason why non-axisymmetric plans worked better than the axisymmetric plan was explained as the change of the unsteady exciting signal arising from IGV wakes. Besides the high-frequency components, the nonaxisymmetric plan generated a beneficial low-frequency square-wave exciting signal and other secondary frequency components. Compared with the axisymmetric plan, multifrequency exciting wakes arising from the non-axisymmetric plans are easier to get coupling relation with complex vortices such as clearance vortices, passage vortices and shedding vortices.  相似文献   

14.
The relationship between the two-dimensional theory of tilted lipid membranes and three-dimensional liquid crystal theory is discussed in detail. The latter framework furnishes an appropriate foundation for membrane theory and facilitates a straightforward reduction to a well-posed two-dimensional model. This emerges as a special case of the Cosserat theory of elastic shells and incorporates a model of generalized capillarity in which the membrane energy responds to surface curvature and also to surface dilation and its gradient.  相似文献   

15.
The filtration performance of the moving bed granular filter with axial flow (MBGF-AF) is investigated through a large cold experiment. The effect of different operation parameters on the filtration performance (collection efficiency, pressure drop) of the axial-flow moving bed filter is investigated in combination with the dust deposition effect and the mechanism of trapping dust by the capturing particles. The results show that the collection efficiency of MBGF-AF is enhanced by decreasing the superficial gas velocity, increasing the inlet dust concentration properly, or decreasing the moving velocity of the capturing particles. A model covering the above operation parameters is established to calculate the collection efficiency of the moving bed granular filter. It is used in a wide range of operating parameters for the MBGFs.  相似文献   

16.
In a binary granular system composed of two types of particles with different granule sizes and the same density, particle sorting occurs easily during the flow process. The segregation pattern structure is mainly affected by the granular velocity and granular concentration in the flow layer. This paper reports on the experimental velocity and concentration measurement results for spherical particles in a quasi-two-dimensional rotating drum. The relationship between the granular velocity along the depth direction of the flow layer and granular concentration was established to characterize structures with different degrees of segregation. The corresponding relationships between the granular velocity and concentration and the segregation pattern were further analyzed to improve the theoretical models of segregation (convection–diffusion model and continuous flow model) and provide a reference for granular segregation control in the production process.  相似文献   

17.
Presented in this paper is a precise investigation of the effect of surface stress on the vibration characteristics and instability of fluid-conveying nanoscale pipes.To this end,the nanoscale pipe is modeled as a Timoshenko nanobeam.The equations of motion of the nanoscale pipe are obtained based on Hamilton's principle and the Gurtin-Murdoch continuum elasticity incorporating the surface stress effect.Afterwards,the generalized differential quadrature method is employed to discretize the governing equations and associated boundary conditions.To what extent important parameters such as the thickness,material and surface stress modulus,residual surface stress,surface density,and boundary conditions influence the natural frequency of nanoscale pipes and the critical velocity of fluid is discussed.  相似文献   

18.
基于球形颗粒几何排列的离散元试样高效生成方法   总被引:1,自引:0,他引:1  
李勇俊  季顺迎 《应用力学学报》2020,(2):469-476,I0001
在球体离散元数值模拟中,颗粒的初始排列状态是影响计算效率和计算结果的重要环节。本文采用前进面几何构造算法,提出了一种基于网格搜索的球形颗粒随机排列高效算法。通过求解空间三边方程,满足了粒径设置的任意大小的颗粒依次置入前进面的外侧,并与构成前进面的三个颗粒相互接触。为获得高体积分数的颗粒簇,该算法允许颗粒改变其粒径大小。采用颗粒网格化方法可以简化前进面的搜索,并由此提高排列效率。通过计算平均配位数、体积分数和二阶结构张量的特征值,对不同粒径比下得到的立方体试样进行了分析,得到试样配位数及体积分数均随着粒径比的增大而增大,且得到的试样为各向同性。此外,空间网格的大小和初始颗粒的生成点对随机排列的效率均会产生显著的影响。最后,对非规则铁路道砟进行了精细构造及压碎模拟,发现DEM模拟得到的应力-应变曲线与试验结果基本吻合,验证了该算法得到的颗粒试样在模拟道砟裂纹起裂、扩展等过程的有效性。  相似文献   

19.
Due to the novel applications of flexible pipes conveying fluid in the field of soft robotics and biomedicine, the investigations on the mechanical responses of the pipes have attracted considerable attention. The fluid-structure interaction(FSI) between the pipe with a curved shape and the time-varying internal fluid flow brings a great challenge to the revelation of the dynamical behaviors of flexible pipes, especially when the pipe is highly flexible and usually undergoes large deformations. ...  相似文献   

20.
采用离散单元法并从能量耗散的角度研究颗粒阻尼对系统减振特性的影响。建立了颗粒介质细观下的法向、切向和滚动方向的粘弹性接触模型和能量耗散模型,通过冲击激励和简谐激励下系统振动响应的多参数能量耗散分析来研究颗粒阻尼的耗能机理和减振特性。数值试验表明,颗粒介质可以在一个较宽的振动幅值范围内有效的发挥其阻尼效应,其耗能具有阶梯状周期性的特点。填充率是影响颗粒阻尼耗能减振效果的主要工程可控参数并对系统共振频率产生重大影响,当填充率接近极值时,系统出现无阻尼共振及共振频率超出无颗粒系统固有频率的现象。系统在最优填充率下共振时,颗粒与箱体保持恒定相位差的超振幅稳态运动。较小粒径的颗粒可以提高能量耗散率并使振动系统更快趋向静平衡状态,而恢复系数和摩擦系数则对法向和切向耗能的比值有较大影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号