首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An integrated 3mm-wave Schottky diode mixer and pseudomorphic high-electron-mobility transistor (PHEMT) IF amplifier with record noise performance at room temperature is described. The design has shown the room-temperature double-sideband (DSB) receiver noise temperature TRDSB of 190 K at 100 GHz due to a very low conversion loss in the full-height waveguide mixer and an ultra-low noise of the PHEMT IF amplifier. The receiver noise temperature has been reduced by a factor of 1.5 in comparison with the best previously reported 3mm-wave Schottky diode mixer receiver.  相似文献   

2.
The performance of a submillimeter heterodyne receiver using an HCOOH laser local oscillator and an open structure mixer with a Schottky barrier diode has been optimized for 693 GHz. Working at room temperature a single sideband (SSB) system noise temperature of 7,300 K, a mixer noise temperature of 6,100 K and a conversion loss of 12 dB has been achieved. The same receiver system has been investigated at 324 GHz using an HCOOD laser local oscillator yielding a noise temperature of 3,100 K (SSB), a mixer noise temperature of 2,400 K (SSB) and a conversion loss of 10 dB (SSB). An acousto-optical spectrometer has also been constructed, with 1024 channels and a channel-bandwidth of 250 kHz. The system NEP per channel was 2.5×10–17 W/Hz1/2 at 324 GHz and 5.0×10–17 W/Hz1/2 at 693 GHz.  相似文献   

3.
The paper describes a 3mm cryogenic mixer receiver using high doping density (“room-temperature”) Schottky diodes. The measured equivalent noise temperature Teq of the diodes is 109 K at 20 K, which is much higher than the Teq of the low doping density (“cryogenic”) diodes. In spite of this, the double-sideband (DSB) noise temperature of the cryogenic receiver developed is 55 K at 110 GHz, owing to the low conversion loss of the mixer and ultra-low noise of the PHEMT IF amplifier. This is the lowest noise temperature ever reported for a Schottky diode mixer receiver. The results obtained are useful for the development of submm receivers in which high doping density Schottky diodes are used.  相似文献   

4.
0.34 THz无线通信收发前端   总被引:2,自引:2,他引:0       下载免费PDF全文
描述了一种基于肖特基二极管技术的0.34 THz无线通信收发前端。该前端采用超外差结构,由0.34 THz谐波混频器、0.17 THz本振8倍频链和偏置电路组成。0.34 THz谐波混频器基于反向并联肖特基二极管,可以实现信号的上变频发射和下变频低噪声检测。0.17 THz本振8倍频链由三级二倍频及驱动放大链路组成,可将20~22.5 GHz信号倍频至0.16~0.18 THz,为混频器提供5~10 dBm左右的本振信号。实验测试结果表明:该前端用于信号发射时,在0.34 THz频点的饱和输出功率为-14.58 dBm;用于信号检测时,最低单边带(SSB)变频损耗为10.0 dB,3 dB中频带宽约30 GHz。限于测试条件,未能测试前端接收噪声温度,仿真得到的双边带噪声温度数值低于1000 K。在该前端基础上,完成了首次基于16QAM 数字调制体制的0.34 THz无线通信实验,传输速率达3 Gb/s。  相似文献   

5.
The GaAs Schottky diode is predominantly used as the critical mixer element in heterodyne receivers in the frequency range from 300 GHz to several THz[1]. At operating frequencies above one THz the skin effect adds significant parasitic resistance to the diode which degrades the receiver sensitivity. A novel diode structure called the Schottky barrier membrane diode is proposed to decrease the skin effect resistance by reducing the current path between the Schottky and ohmic contacts. This is accomplished by fabricating the diode on a very thin membrane of GaAs (about 1 m thickness). A theoretical analysis has shown that this will reduce the substrate resistance by 60% at 3 THz. This reduction in resistance corresponds to a better frequency response which will improve the device's performance as a mixer element.This work has been supported by a grant from Texas Instruments and the National Science Foundation under contract ECS-8412477  相似文献   

6.
We accurately measured the noise temperature and conversion loss of a cryogenically cooled Schottky diode operating near 800 GHz, using the UCB/MPE Submillimeter Receiver at the James Clerk Maxwell Telescope. The receiver temperature was in the range of the best we now routinely measure, 3150 K (DSB). Without correcting for optical loss or IF mismatch, the raw measurements set upper limits ofT M=2850 K andL M=9.1 dB (DSB), constant over at least a 1 GHz IF band centered at 6.4 GHz with an LO frequency of 803 GHz. Correction for estimated optical coupling and mismatch effects yieldsT M=1600 K andL M=5.5 dB (DSB) for the mixer diode itself. These values indicate that our receiver noise temperature is dominated by the corner cube antenna's optical efficiency and by mixer noise, but not by conversion loss or IF mismatch. The small fractional IF bandwidth, measured mixer IF band flatness from 2 to 8 GHz, and similarly good receiver temperatures at other IF frequencies imply that these values are representative over a range of frequencies near 800 GHz.  相似文献   

7.
Ag/perylene-monoimide(PMI)/n-GaAs Schottky diode was fabricated and the current–voltage (IV) characteristics at a wide temperature range between 75 and 350 K and also the capacitance–voltage (CV) characteristics at room temperature for 1 MHz have been analyzed in detail. The measured IV characteristics exhibit a good rectification behavior at all temperature values. By using standard analysis methods, the ideality factor and the barrier height are deduced from the experimental data and also the variations of these parameters with the temperature are analyzed. In addition, by means of the Cheung and Cheung method, the series resistance and some other electrical properties are calculated for the diode. Finally, capacitance–voltage characteristics of device have been analyzed at the room temperature. From analyzing the capacitance measurements, Schottky barrier height is determined and then compared with the value which calculated from the IV measurements at room temperature. Also, the concentration of ionized donors, built-in potential and some other parameters of diode are found using CV characteristics.  相似文献   

8.
This paper considers a novel doping profile for Schottky barrier mixer diodes called the Mott barrier. The structure consists of a metal-semiconductor junction in which the semiconductor's epitaxial layer is very lightly doped and thin enough so that it remains depleted even under substantial forward bias. It has been proposed that Mott barrier diodes will generate less noise and have lower series resistance-junction capacitance products than standard Schottky diodes, thus increasing the sensitivity and cut-off frequency of heterodyne receivers. In this paper, the band structure and electron transport properties of the Mott diode are evaluated. This analysis shows that the Mott diode actually will have a large series resistance-junction capacitance product and excessive hot electron noise, making it a poor candidate for high-frequency applications. Experimental results are presented which substantiate these conclusions.  相似文献   

9.
Continuosly tunable submillimeter radiation above 1 THz has been generated by sum-frequency mixing of HCN laser radiation (second strongest transition at 964.3 GHz) with that of klystron (70 GHz) in the Schottky barrier diode used as the non-linear element. Generated radiation was sufficiently strong to allow the high resolution frequency measurement of 99,1 88,0 transition in32S16O.  相似文献   

10.
Mn-doped p-InSe semiconductor crystals were grown by Bridgman –Stockbarger technique. The crystals were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and fabricated Sn/InSe:Mn Schottky diodes. The current–voltage (IV) and capacitance–voltage (CV) measurements of diodes were investigated to determine the response of devices to electron irradiation with 9?MeV energy and 1.2?×?1010?e??cm?2 dose. After irradiation, the ideality factor and barrier height of the Sn/InSe:Mn Schottky diode were determined as 1.66 and 0.85?eV, respectively. Before irradiation, they were determined as 1.37 and 0.90?eV, respectively. It has been concluded that the radiation with high energy may contribute to form defects at the interface of the Sn/InSe:Mn device.  相似文献   

11.
Electronic and interface state distribution properties of Ag/p-Si Schottky diode have been investigated. The diode indicates non-ideal current-voltage behavior with an ideality factor greater than unity. The capacitance-voltage (C-V) characteristic is linear in reverse bias indicating rectification behavior and charge density within depletion layer is uniform. From I-V and C-V characteristics, junction parameters such as diode ideality factor and barrier height were found as 1.66 and ?B(I-V) = 0.84 eV (?B(C-V) = 0.90 eV), respectively. The interface state density Nss and relaxation time τ of the Schottky diode were determined by means of Schottky capacitance spectroscopy method. The results show the presence of thin interfacial layer between the metal and semiconductor.  相似文献   

12.
The paper describes an uncooled front-end of the Schottky diode receiver system, which may be applied for observations of middle atmospheric ozone and carbon monoxide thermal emission lines at frequencies 110.8 GHz and 115.3 GHz, respectively. The mixer of the front-end has utilized high-quality Schottky diodes that allowed us to reduce the mixer conversion loss. The combination of the mixer and an ultra-low-noise IF amplifier in the one integrated unit has resulted in double-sideband (DSB) receiver noise temperature of 260 K at a local oscillator (LO) frequency of 113.05 GHz in the instantaneous IF band from 1.7 to 2.7 GHz. This is the lowest noise temperature ever reported for an uncooled ozone receiver system with Schottky diode mixers.  相似文献   

13.
We have studied Au/n-GaN Schottky barrier diodes. GaN surfaces have been prepared by cleaning in HCl and (NH4)2S prior to metal deposition. The zero-biased barrier heights and ideality factors obtained from the current-voltage characteristics differ from diode to diode, although all the samples were prepared identically. The statistical analysis for the reverse bias C-V data yielded mean value of (1.35±0.04) eV for Schottky barrier height of HCl treated sample and (1.20±0.03) eV for (NH4)2S sample, where 9 dots were considered from each cleaning method. It was found that the barrier height values obtained from the C−2-V (1.43 eV) and I-V characteristics (0.89 eV) are different from each other by 0.54 eV. The inhomogeneous barrier heights were found to be related to the effect of the high series resistance on diode parameters (Akkiliç et al., 2004) [1].  相似文献   

14.
Recent technological advances have made possible the development of heterodyne receivers with high sensitivity and high spectral resolution for frequencies in the range 1,000–3,000 GHz (1–3 THz). These receivers rely on GaAs Schottky barrier mixer diodes to translate the high-frequency signal to a lower frequency where amplification and signal processing are possible. At these frequencies, the diode quality is a major limitation to the performance of the receiver. The design, fabrication and DC evaluation of a diode for this frequency range is presented. A figure-of-merit cut-off frequency of over 10 THz is achieved with a record low zero biased capacitance of 0.5 fF. Results from RF tests are also given.This work has been supported in part by the National Science Foundation under contract ECS-8720850 and the US Army.  相似文献   

15.
Electrical transport properties of Ag metal-fluorescein sodium salt (FSS) organic layer-silicon junction have been investigated. The current-voltage (I-V) characteristics of the diode show rectifying behavior consistent with a potential barrier formed at the interface. The diode indicates a non-ideal I-V behavior with an ideality factor higher than unity. The ideality factor of the Ag/FSS/p-Si diode decreases with increasing temperature and the barrier height increases with increasing temperature. The barrier height (φb=0.98 eV) obtained from the capacitance-voltage (C-V) curve is higher than barrier height (φb=0.72 eV) derived from the I-V measurements. The barrier height of the Ag/FSS/p-Si Schottky diode at the room temperature is significantly larger than that of the Ag/p-Si Schottky diode. It is evaluated that the FSS organic layer controls electrical charge transport properties of Ag/p-Si diode by excluding effects of the SiO2 residual oxides on the hybrid diode.  相似文献   

16.
The RF matching problem in the input circuit of the mm-wavelength whisker contacted Schottky diode mixer is studied. The experimental results, obtained on the 3mm wavelength mixer mounts in the broad band of frequencies from 80 to 115 GHz are presented. It is shown that advantage in the receiver noise temperature may be realized by the use of a full-height instead of 1/4-reduced-height waveguide because of reduction loss in the mixer input circuit even beginning from the 3mm-wavelength. With a full-height waveguide mixer the double sideband (DSB) receiver noise temperature is 300 divided by 350K over the 85 to 110 GHz band. Input bandwidth of the fullheight waveguide mixer (cap delta f S/f SO greater than 30%) is equal to 1/2-and close to 1/4-reduced-height waveguide mixers.  相似文献   

17.
A thin poly(ethylmethacrylate) (PEMA) layer is deposited on n-InP as an interlayer for electronic modification of Au/n-InP Schottky structure. The electrical properties of Au/PEMA/n-InP Schottky diode have been investigated by current–voltage (IV) and capacitance–voltage (CV) measurements at different annealing temperatures. Experimental results show that Au/PEMA/n-InP structure exhibit a good rectifying behavior. An effective barrier height as high as 0.83 eV (IV) and 1.09 eV (CV) is achieved for the Au/PEMA/n-InP Schottky structure after annealing at 150 °C compared to the as-deposited and annealed at 100 and 200 °C. Modified Norde's functions and Cheung method are also employed to calculate the barrier height, series resistance and ideality factors. Results show that the barrier height increases upon annealing at 150 °C and then slightly decreases after annealing at 200 °C. The PEMA layer increases the effective barrier height of the structure as this layer creates a physical barrier between the Au metal and the n-InP. Terman's method is used to determine the interface state density and it is found to be 5.141 × 1012 and 4.660 × 1012 cm?2 eV?1 for the as-deposited and 200 °C annealed Au/PEMA/n-InP Schottky diodes. Finally, it is observed that the Schottky diode parameters change with increasing annealing temperature.  相似文献   

18.
The current transport parameters of 4H-SiC merged PiN Schottky(MPS) diode are investigated in a temperature range of 300-520 K.Evaluation of the experimental current-voltage(I-V) data reveals the decrease in Schottky barrier height Φ b but an increase in ideality factor n,with temperature decreasing,which suggests the presence of an inhomogeneous Schottky barrier.The current transport behaviours are analysed in detail using the Tung’s model and the effective area of the low barrier patches is extracted.It is found that small low barrier patches,making only 4.3% of the total contact,may significantly influence the device electrical characteristics due to the fact that a barrier height of 0.968 eV is much lower than the average barrier height 1.39 eV.This shows that ion implantation in the Schottky contact region of MPS structure may result in a poor Ti/4H-SiC interface quality.In addition,the temperature dependence of the specific on-resistance(R on sp),T 2.14,is determined between 300 K and 520 K,which is similar to that predicted by a reduction in electron mobility.  相似文献   

19.
The current through a metal–semiconductor junction is mainly due to the majority carriers. Three distinctly different mechanisms exist in a Schottky diode: diffusion of carriers from the semiconductor into the metal, thermionic emission–diffusion (TED) of carriers across the Schottky barrier and quantum–mechanical tunneling through the barrier. The insulating layer converts the MS device in an MIS device and has a strong influence on its current–voltage (I–V) and the parameters of a Schottky barrier from 3.7 to 15 eV. There are several possible reasons for the error that causes a deviation of the ideal behavior of Schottky diodes with and without an interfacial insulator layer. These include the particular distribution of interface states, the series resistance, bias voltage and temperature. The GaAs and its large concentration values of trap centers will participate in an increase of the process of thermionic electrons and holes, which will in turn the IV characteristic of the diode, and an overflow maximum value [NT = 3 × 1020] is obtained. The I–V characteristics of Schottky diodes are in the hypothesis of a parabolic summit.  相似文献   

20.
太赫兹混频器是太赫兹波收发系统中的关键器件,是将信号频率从一个量值变换为另一个量值的电路器件,其中肖特基二极管是太赫兹混频器中的核心器件,除了肖特基二极管以外,低频滤波器、本振端口等也属于太赫兹混频器中的关键器件。对0.38THz混频器中的关键组件包括波导管、肖特基二极管、滤波器等在HFSS中进行了建模、仿真,最后通过对仿真结果的分析,实现了可以满足0.38THz太赫兹混频器的各个关键模块的模型,通过这些模型实现了混频器整体的优化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号