首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
结晶性芳香聚酯高压结晶行为研究进展   总被引:2,自引:0,他引:2  
运用高压极限手段研究聚合物的结构、形态和性能是20世纪60年代以来兴起的一项聚合物前沿课题。本文主要结合作者自己的研究工作,重点叙述聚对苯二甲酸乙二醇酯(PET)的高压结晶行为研究,包括温度、压力、时间及分子量对PET高压结晶行为的影响,高压结晶PET的形态。以及对PET伸直链晶体结晶机理的探讨,同时简要介绍了对其它结晶性芳香聚酯诸如聚对苯二甲酸丁二醇酯(PBT)及聚对萘二甲酸乙二醇酯(PEN)的高压结晶行为研究,反映了该领域的研究概况和最新进展。并对今后的研究提出了展望。  相似文献   

2.
对聚对苯二甲酸乙二醇酯(PET)在特定的结晶条件下是否生成伸直链晶体进行了论证,系统总结了伸直链晶体形成的证据,并讨论了PET伸直链晶体形成的机理。  相似文献   

3.
PET/PC共混体系的酯交换反应对其高压结晶行为的影响   总被引:1,自引:1,他引:0  
利用转矩流变仪、DSC、SEM及WAXD等表征手段研究了PET/PC共混体系的酯交换反应对其高压结晶行为的影响.SEM观察表明,PET和PC熔混时的酯交换反应有利于PET/PC体系在高压结晶时生成厚度较大的伸直链晶体,且可以促进其高压下酯交换反应的发生.楔形伸直链晶体和弯曲伸直链晶体的存在证明链滑移扩散和酯交换反应两种机制对体系中聚酯伸直链晶体的增厚有贡献.拟合分峰法和War-ren-Averbach傅里叶分析法的计算结果表明,随PET/PC体系熔混时酯交换反应程度的增加,高压结晶共混物的结晶度降低,PET的平均微晶尺寸增大,点阵畸变平均值则减小,而微晶尺寸分布变宽.提出了在共聚物组分都具备结晶能力时,结晶诱导化学反应和化学反应诱导结晶两种过程在一定条件下可同时发生的观点.  相似文献   

4.
本文用解偏振光法与DSC法分别测定并研究了PC/PET/EPDM共混体系的结晶速度、结晶度、Avrami指数(n)和熔融温度及其影响因素,共混物中PET的结晶速度、结晶度均随PC含量增加而下降;EPDM用量不超过10%时,可提高PET的结晶速度,但不影响结晶度和成核与增长方式,n值不变。当EPDM为5%时,结晶速度呈现极大值。经退火处理的共混物呈现熔融双峰,PC量增加,高温熔融峰略移向高温方向;热处理温度升高或时间延长,则低温熔融峰移向高温方向。  相似文献   

5.
PTT/PET共混体系晶体形态与结晶性能的研究   总被引:1,自引:0,他引:1  
用差示扫描量热仪(DSC)、广角X射线衍射(WAXD)和正交偏光显微镜研究了聚对苯二甲酸丙二酯(PTT)和聚对苯二甲酸乙二酯(PET)共混体系的晶体形态与结晶性能.结果表明,共混体系结晶性能与PTT的含量有关.PET的加入,使共混体系的球晶尺寸减小.球晶完善性降低.当PTT含量为40wt%~60wt%时,共混物分别出现了双重熔融峰和双重结晶峰.双重熔融峰是加热过程中熔融重结晶造成的,双重结晶峰说明不完善的晶体产生的次级结晶.  相似文献   

6.
静高压下聚酰胺的结晶行为   总被引:2,自引:1,他引:1  
为获得聚酰胺(PA)在静高压下结晶试样的结构、形态和性能方面的信息,国外学者对PA在常压至1.0GPa压力范围内的结晶行为进行了一系列研究工作。本文介绍了这一领域的研究概况和最新进展。  相似文献   

7.
PET/PEN/DBS共混体系结构与形貌的研究   总被引:2,自引:0,他引:2  
共混是改善聚合物性能的一种简单而又行之有效的方法,PET和PEN均为结晶性聚酯,由于PEN合成原料的影响,致使PEN的价格较高,但性能比PET优良,通过二者的共混,既可以提高PET的性能,又可以降低PEN成本,有关PET/PEN共混体系的研究已引起人们的关注,而对于共混体系结晶形态和结晶条件的研究较少,由于成核剂能够提高结晶速率,减小球晶尺寸,因此本文对PET/PEN/DBS共混体系中,组分组成的影响及不同结晶条件下共混物的结晶形貌进行研究。  相似文献   

8.
PET/PEN共混体系结构与性能研究进展   总被引:4,自引:0,他引:4  
综述了国内外PET/PEN共混体系的研究进展,重点论述了PET/PEN共混体系的结晶性能相容性酯交换影响因素、结晶动力学,并对其应用前景做了展望.  相似文献   

9.
利用热分析研究了聚对苯二甲酸乙二醇酯(PET)与对苯二甲酸乙二醇酯(ET)-己内酯(CL)共聚物(TCL)共混体系的相容性,同时考察了体系中TCL组成分布不均一性及高温热处理对体系相容性的影响。  相似文献   

10.
PET/PC共混体系结晶行为研究进展   总被引:1,自引:0,他引:1  
聚对苯二甲酸乙二醇酯(PET)/聚碳酸酯(PC)合金材料是综合性能优异的工程塑料,对其结晶行为的研究,可为设计,调节及控制材料的性能提供理论基础。评述了近年来PET/PC共混体系结晶行为研究的最新工作和理论进展,包括PET/PC共混体系酯交换、相容性及结晶性的关系,退火对PET/PC共混体系结晶行为的影响,第三组分对PET/PC共混体系结晶行为的影响,PET/PC共混体系结晶动力学以及PET/PC共混体系高压结晶行为的研究。并对今后的深入研究作了展望。  相似文献   

11.
The effect of annealing on the morphology and subsequent crystallization kinetics of poly (ethylene terephthalate)/polycarbonate blends have been investigated using differential scanning calorimetry (DSC), polarized light microscopy, and scanning electron microscopy (SEM). During annealing transesterification and phase coarsening occurred, and the final properties were compromizes between these two competing effects. Initially, the effect of phase separation dominated and the rate of cold crystallization of PET increased. Transesterification, however, became increasingly important and the rate of crystallization decreased progressively until finally the blend completely lost the ability to crystallize. At this stage in the reaction a single glass transition was observed and uniform glassy material observed in the SEM. The maximum crystallinity of the blend achieved on heating showed the same trend in first increasing and then decreasing with annealing time. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2129–2136, 2004  相似文献   

12.
The morphology and crystallization behavior of poly(phenylene sulfide) (PPS) and poly(ethylene terephthalate) (PET) blends compatibilized with graft copolymers were investigated. PPS‐blend‐PET compositions were prepared in which the viscosity of the PPS phase was varied to assess the morphological implications. The dispersed‐phase particle size was influenced by the combined effects of the ratio of dispersed‐phase viscosity to continuous‐phase viscosity and reduced interfacial tension due to the addition of PPS‐graft‐PET copolymers to the blends. In the absence of graft copolymer, the finest dispersion of PET in a continuous phase of PPS was achieved when the viscosity ratio between blend components was nearly equal. As expected, PET particle sizes increased as the viscosity ratio diverged from unity. When graft copolymers were added to the blends, fine dispersions of PET were achieved despite large differences in the viscosities of PPS and PET homopolymers. The interfacial activity of the PPS‐graft‐PET copolymer appeared to be related to the molecular weight ratio of the PPS homopolymer to the PPS segment of the graft copolymer (MH/MA). With increasing solubilization of the PPS graft copolymer segment by the PPS homopolymer, the particle size of the PET dispersed phase decreased. In crystallization studies, the presence of the PPS phase increased the crystallization temperature of PET. The magnitude of the increase in the PET crystallization temperature coincided with the viscosity ratio and extent of the PPS homopolymer solubilization in the graft copolymer. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 599–610, 2000  相似文献   

13.
用广角X-角线衍射法和差法扫描量热法研究了磷酸三苯酯对PBT/PET共混体系结晶行为影响,结果表明:TPPW作为该共混体系的稳定剂,只能延长在熔融状态下酯交换反应发生的时间,TPP含量一定时,熔融时间增加,PBT,PET之间的酯交换反应同样会发生,不同熔融时间,就要求TPP的用量也不相同。TPP在PBT/PET共混体系中没有结晶成核剂的作用,它也不改变PBT,PET的结晶结构。  相似文献   

14.
Blends of poly(trimethylene terephthalate) (PTT) and poly(ethylene terephthalate) in the amorphous state were miscible in all of the blend compositions studied, as evidenced by a single, composition‐dependent glass‐transition temperature observed for each blend composition. The variation in the glass‐transition temperature with the blend composition was well predicted by the Gordon–Taylor equation, with the fitting parameter being 0.91. The cold‐crystallization (peak) temperature decreased with an increasing PTT content, whereas the melt‐crystallization (peak) temperature decreased with an increasing amount of the minor component. The subsequent melting behavior after both cold and melt crystallizations exhibited melting point depression behavior in which the observed melting temperatures decreased with an increasing amount of the minor component of the blends. During crystallization, the pure components crystallized simultaneously just to form their own crystals. The blend having 50 wt % of PTT showed the lowest apparent degree of crystallinity and the lowest tensile‐strength values. The steady shear viscosity values for the pure components and the blends decreased slightly with an increasing shear rate (within the shear rate range of 0.25–25 s?1); those of the blends were lower than those of the pure components. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 676–686, 2004  相似文献   

15.
Poly(oxetane) fractions ranging in number-average molecular weights from 7800 to 157000 have been isothermally crystallized in the temperature range from –50 to 19 C, using dilatometric and calorimetric techniques. In both cases, reproducible isotherms were obtained with an Avrami exponent equal to three. The crystallization rate against crystallization temperature presents a maximum at –30 C. The level of crystallinity changes with molecular weight and the influence of this parameter on the rate of crystallization is pronounced. The crystallization temperature coefficient was studied using nucleation theory and it was found an slight increase in the basal interfacial free energy for the lowest molecular weight fraction. For the analysis of the temperature coefficient at the higher undercoolings, different approximations for the free energy of fusion and the transport term have been considered. The conclusion of this analysis is that, independently of these approximations, the obtained temperature coefficients are the same.  相似文献   

16.
The miscibility and the isothermal crystallization kinetics for PBT/Epoxy blends have been studied by using differential scanning calorimetry, and several kinetic analyses have been used to describe the crystallization process. The Avrami exponents n were obtained for PBT/Epoxy blends. An addition of small amount of epoxy resin (3%) leads to an increase in the number of effective nuclei, thus resulting in an increase in crystallization rate and a stronger trend of instantaneous three‐dimensional growth. For isothermal crystallization, crystallization parameter analysis showed that epoxy particles could act as effective nucleating agents, accelerating the crystallization of PBT component in the PBT/Epoxy blends. The Lauritzen–Hoffman equation for DSC isothermal crystallization data revealed that PBT/Epoxy 97/3 had lower nucleation constant Kg than 100/0, 93/7, and 90/10 PBT/Epoxy blends. Analysis of the crystallization data of PBT/Epoxy blends showed that crystallization occurs in regime II. The fold surface free energy, σe = 101.7–58.0 × 10?3 J/m2, and work of chain folding, q = 5.79–3.30 kcal/mol, were determined. The equilibrium melting point depressions of PBT/Epoxy blends were observed and the Flory–Huggins interaction parameters were obtained. It indicated that these blends were thermodynamically miscible in the melt. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1320–1330, 2006  相似文献   

17.
Neat poly(ethylene terephthalate) (PET) and PET/antimony doped tin oxide (ATO) nanocomposites were prepared by in situ polymerization. The study of the isothermal crystallization behaviors of neat PET and PET/ATO nanocomposites was carried out using differential scanning calorimetry (DSC). The crystallization kinetics under isothermal conditions could be described by the Avrami equation. For neat PET and PET/ATO nanocomposites, the Avrami exponent n both decreased with increasing crystallization temperature. In addition, for the same crystallization temperature, the value of n increased with increasing ATO content. These suggested that the crystallization types related to the values of n in the Avrami theory could not be suitable for the crystallization of PET and its nanocomposites. The change of the n values indicated that the addition of ATO resulted in the increase of the crystallizing growth points. That is a heterogeneous nucleating effect of ATO on crystallization of PET. In the DSC scan after isothermal crystallization process, multiple melting behavior was found. And the multiple endotherms could be attributed to melting of the recrystallized materials or the secondary lamellae produced during different crystallization processes. The equilibrium melting temperature of PET in the nanocomposites increased with increasing the ATO content. Surface free energy of PET chain folding for crystallization of PET/ATO nanocomposites was lower than that of neat PET, confirming the heterogeneous nucleation effect of ATO.  相似文献   

18.
The melting behavior of poly(butylene terephthalate) and its blends with bisphenol-A polycarbonate was investigated with differential scanning calorimetry. The aim of this work was to determine the equilibrium melting temperature and its dependence on the blend composition using the Hoffman-Weeks plots. It is shown that the critical analysis of various influences on the melting peak is necessary for the reorganization processes and crystallized content of blends. The experimental conditions and the corrections of measured temperatures were derived and discussed. It was found that the use of the extrapolated onset temperature Tm,o of the melting peak is more efficient than the maximum temperature Tm for the Hoffman-Weeks plots. The equilibrium values of pure PBT are determined to be Tom,o = 501 K and Tom = 506 K. The equilibrium temperatures of the blends do not show a depression with increasing PC content. Using the Nishi-Wang relation, the results can be qualitatively interpreted with a polymer-polymer interaction coefficient χ ≥ 0 between both components. A weak increase in the equilibrium temperature with increasing PC content was observed. A hypothesis to explain this is based on the possibility of a changed population of the different spherulites with various melting temperatures in dependence on PC content. © 1996 John Wiley & Sons, Inc.  相似文献   

19.
本文根据聚丙烯(PP)与聚对苯二甲酸乙二醇酯(PET)共混对在熔 融状态下.流动粘度差阳溶度参数差大的特点,用挤出造粒的方法制得 共熔成纤目增强材料。通过扫描电镜观察.证实PP/PET比从95/5到 80/20时。PET均以纤维状结构分布在PP基质中。该共熔成纤体具有 良好的机械性能。在未加偶联剂时,拉伸强度虽略比纯PP低.但抗冲击 强度与纯PP相当。该结果可用于指导PP的改性和PET废料再生利用 工作。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号