首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
水热法是广泛应用于锂离子电池Si@C电极材料的一种制备方法,其反应条件是影响产物最终形貌和性能的重要因素, 采取最佳的反应工艺可以大大提升材料的电化学性能。本研究中, 使用葡萄糖作为碳源, 光伏切割废料硅为硅源, 探究了水热法制备核壳结构Si@C电极材料的最优工艺, 分别研究了温度、 原料浓度、 反应时间和原料比例对产物的形貌、 性能的影响以及相互之间的关系, 并得到最佳反应条件。在该条件下(葡萄糖浓度为0.5 mol·L-1, 硅与葡萄糖重量比为0.3:1, 反应温度190 oC, 反应时间9 h), 得到了包覆完整、 粒径适中的Si@C电极材料(CS190-3), 对以该样品为负极的扣式半电池进行电化学测试, 在655 mA·g-1的电流密度下, 其首圈放电比容量为3369.5 mAh·g-1, 经过500次循环剩余容量为1405.0 mAh·g-1。倍率测试中, 在6550 mA·g-1的电流密度下,其剩余容量为937.1 mAh·g-1,当电流密度恢复至655 mA·g-1时,电池放电比容量仍可恢复至1683.0 mAh·g-1。  相似文献   

2.
为考察不同锰源对所制备尖晶石LiMn2O4(LMO)电化学性能的影响(特别是高温性能),采用沉淀法制备前驱体,通过不同煅烧温度制备得到最常用的锰氧化物(MnO2、Mn2O3和Mn3O4)为锰源,经相同条件制备得到LMO正极材料,通过考察所得LMO形貌及电化学性能来研究锰源与LMO电化学性能的关系。研究结果表明,相同的前驱体在不同煅烧温度下可以得到不同的锰氧化物,且各自具有不同的形貌结构。由这些锰氧化物都可以得到高纯度的LMO,但产物形貌结构以及材料中的八面体晶体含量和尺寸不同。由Mn2O3制备得到的LMO材料中的八面体晶体含量最多,且尺寸最均匀,在3种LMO中容量性能、倍率性能和循环性能最好:0.2C(1C=148 mA·g-1)下首次放电比容量为131.8 mAh·g-1;3C下还有100.4 mAh·g-1的放电比容量。其...  相似文献   

3.
通过静电纺丝和静电喷射技术, 将三氧化二铝(Al2O3)纳米颗粒沉积在两层聚四氟乙烯六氟丙烯[P(VDF-HFP)]静电纺丝隔膜之间, 制备出了具有“三明治”结构的P(VDF-HFP)/Al2O3/P(VDF-HFP)复合锂离子电池隔膜. 分析了隔膜的形态结构、 热收缩性能、 拉伸性能、 电化学性能以及隔膜在电池中的循环性能. 测试结果表明, 该复合隔膜比纯P(VdF-HFP)膜拥有更高的吸液率, 隔膜更容易吸收电解液从而形成凝胶聚合物电解质(GPEs). 该复合隔膜的拉伸强度在4 MPa左右, 相对应的断裂伸长率为261.57%. 复合隔膜在室温下的离子电导率为1.61×10-3 S/cm, 且表现出了较高的电化学稳定性(电化学稳定窗口达到5.4 V). 在电池的循环测试中, 使用钴酸锂(LiCoCO2)作为正极材料, 由该复合隔膜组装的电池的首次放电比容量达到了理想的水平, 为145 mA·h·g-1.  相似文献   

4.
利用物理浸渍和冷冻干燥等方法制备了具有三维网状结构的Ru/石墨烯/碳纳米管复合材料, 对该材料的结构、 形貌及电化学性能进行了表征和研究. 结果表明, 当Ru含量为30%, 热处理温度为500 ℃时, 材料的催化性能最优. 将其用作锂氧电池的正极催化剂, 以50 mA/g电流密度进行首次充放电时, 放电比容量约为5800 mA·h/g, 且在放电比容量为4000 mA·h/g以内时, 其极化电压仅为0.9 V; 当以50 mA/g电流密度进行恒容(500 mA·h/g)充放电循环时, 在极化电压低于1.1 V时, 仍能稳定循环12周. 复合材料电催化机理的研究结果表明, 三维网状结构不仅提供了O2和Li+的传输通道, 更增加了放电产物Li2O2的储存场所. 金属钌纳米粒子的负载既增加了复合材料的反应活性位点, 又促进了放电产物Li2O2的分解.  相似文献   

5.
刘黎  田方华  王先友  周萌 《物理化学学报》2011,27(11):2600-2604
采用低温固相法合成了具有纳米结构的LiV3O8材料.扫描电子显微镜(SEM)及透射电子显微镜(TEM)测试显示该材料具有纳米结构.X射线衍射(XRD)表明该材料属于单斜晶系,P21Im空间群.并采用循环伏安法(CV)及电化学阻抗谱图测试对该材料在1、2 mol·L-1Li2SO4水溶液及饱和Li2SO4水溶液中的电化学行为进行了研究.结果表明,LiV3O8在饱和Li2SO4水溶液中具有最好的电化学性能.以LiV3O8作为负极材料,LiNi1/3Co1/3Mn1/3O2作为正极材料,饱和Li2SO4水溶液作为电解液组成了水性锂离子电池,进行恒流充放电测试,结果表明,在0.5C(1C=300 mA·g-1)的充放电倍率下,该水性锂离子电池的首次放电比容量为95.2 mAh·g-1,循环100次后仍具有37.0 mAh·g-1的放电比容量.  相似文献   

6.
锂硫电池因其较高的理论容量和对环境友好等优势被视为极具发展潜力的储能装置,但是多硫化物的穿梭效应极大地限制了锂硫电池的实际应用。本文以葡萄糖为碳源,离子液体为氮源和硫源,KCl和ZnCl2为模板剂,KOH为活化剂,通过热解工艺合成了氮硫共掺杂多孔碳(NSPC)。XPS和极性吸附实验表明N、S杂原子成功引入并且提高了碳材料对多硫化物的吸附能力,有效缓解多硫化物的穿梭效应,而较高的比表面积(1290.67 m2·g-1)有助于提高硫负载量。负载70.1wt.%的硫后(S@NSPC)作为锂硫电池的正极材料表现出了良好的电化学性能。在167.5 mA·g-1的电流密度下S@NSPC的首次放电容量为1229.2 mAh·g-1,远高于S@PC的861.6 mAh·g-1,且S@NSPC循环500圈后容量为328.1 mAh·g-1。当电流密度从3350 mA·g-1恢复至167.5 mA·g-1时,可逆容量达到首圈放电比容量的80%,几乎恢复至其初始值。  相似文献   

7.
采用溶剂热法制备前驱体,后经350 °C热处理,首次合成了空心结构的NiMn2O4微球以及不同含量氧化石墨烯包覆的Ni/Mn3O4/NiMn2O4@RGO复合材料. 电化学性能测试表明,复合负极材料中,含25wt%还原氧化石墨烯的材料储钠性能最佳,其在50 mA·g-1电流密度下,100次循环后放电比容量保持在187.8 mAh·g-1,且800 mA·g-1电流密度下的可逆容量高达149.9 mAh·g-1,明显优于NiMn2O4及其他石墨烯基复合材料. 研究指出,复合材料性能的提升得益于空心微球和还原的氧化石墨烯构成的特殊结构,一方面缩短了电子/离子传输距离,缓解了体积效应,另一方面高导电网络有效增强了活性物质利用率.  相似文献   

8.
以Ni0.6Co0.2Mn0.2(OH)2和LiOH·H2O为前驱体,在LiOH·H2O不过量的条件下,采用简单的固相焙烧法,在910℃下制备出单晶LiNi0.6Co0.2Mn0.2O2(NCM622)。所得材料无需水洗、烘干、退火等处理,可直接用于电极浆料的制备。电化学测试表明,所得NCM622单晶具有较高的比容量和优异的循环稳定性。在0.1C电流下的首次放电比容量达到181.2 mAh·g-1,0.3C下的首次放电比容量为174.4 m Ah·g-1。在0.3C的电流密度下,经过300次循环,放电比容量为150.7 mAh·g-1,容量保持率为86.4%,经500次循环后,放电比容量仍有141.2 mAh·g-1,容量保持率为81.0%。该电化学性能优于850℃下焙烧的多晶NCM...  相似文献   

9.
Fe2O3作为锂电池负极材料具有诸多优点,但其较低的本征电导率和充放电循环过程中材料粉化使得其电化学储锂性能有待改善。 本文以具有花状微纳结构的铁醇盐为反应中间体,在空气气氛下烧结制备出具有花状微纳结构的铁基负极材料Fe2O3。 纳米花状的铁醇盐可以在低烧结温度下转化为目标产物,从而使得产物能够保持中间体的形貌。 300 ℃热处理条件下,所得样品在电流密度为200 mA/g时首次放电比容量为1360 mA·h/g,循环100次后的容量仍然达到515.6 mA·h/g;相比之下,450和800 ℃热处理所得样品100次循环后,比容量分别为247.6和206.7 mA·h/g。 微纳结构在增加材料的活性的同时,也能够抑制材料的粉化现象,因而所制得的材料表现出较大的比容量和良好的循环性能,为解决Fe2O3负极材料循环性能差的问题提供了思路。  相似文献   

10.
胡健  蒙延双  胡倩茹 《电化学》2021,27(5):540-548
以离子液体为碳源和氮源、次亚磷酸钠为磷源、乙酸镍为镍源,一步法制备了磷化镍/氮磷共掺杂碳(Ni2P/NPC)复合材料。SEM、TEM等检测结果表明Ni2P纳米颗粒在N、P共掺杂碳骨架上均匀分布。将所制备Ni2P/NPC作为锂离子电池负极材料时,Ni2P/NPC电极在0.1、0.5、1、3和5 A·g-1电流密度下的放电比容量分别为377.7、 294.1、 265.4、211.7和187.5 mAh·g-1。当电流密度重新回到0.1 A·g-1,放电比容量为368.1 mAh·g-1。电极结构在大倍率下可以保持稳定,表现出优异的倍率性能。在0.5 A·g-1的电流密度下经200次循环后放电比容量维持在301.8 mAh·g-1,容量保持率为80.7%,CV曲线证实Ni2P/NPC在储锂过程中是由扩散过程和电容行为共同控制。  相似文献   

11.
贺勇  唐子龙  张中太 《物理化学学报》2010,26(11):2962-2966
限制纳米电极材料倍率性能的一个重要因素是,在大电流下充放电时,纳米结构可能坍塌,造成容量迅速衰减.通过异价离子的掺杂或第二相的负载有可能弥补纳米材料的这一缺陷.本文以含有Cr2O3的锐钛矿TiO2为原料,通过超声化学-水热法,制备了负载Cr2O3的H2Ti2O5·H2O纳米管.采用X射线衍射(XRD)和透射电镜(TEM)对制得的H2Ti2O5·H2O/Cr2O3纳米管的晶体结构和微观形貌进行了表征和分析.恒流充放电测试显示,H2Ti2O5·H2O/Cr2O3(5%(w,质量分数))纳米管作为锂离子电池阳极材料具有优异的循环稳定性及倍率性能.在150mA·g-1的电流密度下,H2Ti2O5·H2O/Cr2O3纳米管的首次放电容量达到288mAh·g-1;120次循环后,充放电容量仍保持在145mAh·g-1.在1500mA·g-1的电流密度下,首次放电容量为178mAh·g-1;600次循环后,充放电容量保持在80mAh·g-1以上;继续在150mA·g-1电流密度下充放电30个循环,充放电容量达到155mAh·g-1,显示出充放电容量的可回复性.循环伏安测试结果表明,H2Ti2O5·H2O/Cr2O3纳米管的充放电过程由法拉第赝电容反应控制.该一维纳米结构在锂离子电池和非对称电容器领域显示出良好的应用前景.  相似文献   

12.
报道了对苯二甲酸镁作为钠离子电池负极材料的研究.以对苯二甲酸和氢氧化镁为原料,采用酸碱中和反应制备了含结晶水的对苯二甲酸镁(MgC8H4O4·2H2O),该材料对钠离子电池表现出了较好的电化学活性、优异的倍率性能以及良好的循环稳定性.在0.5C(1C=300 mA·g-1)倍率下循环50周以后,可逆容量由114mAh·g-1降至95 mAh·g-1,容量保持率高达83%;在2C的倍率下有高达90 mAh·g-1的可逆比容量.另外,在氮气气氛中,400℃进行后续热处理得到了不含结晶水的对苯二甲酸镁(MgC8H4O4),探讨了结晶水对其电化学性能的影响.结果表明,MgC8H4O4·2H2O的比容量、倍率性能以及循环稳定性都明显优于不含结晶水的对苯二甲酸镁.  相似文献   

13.
采用简单的水解、热处理方法合成三氧化二铁(Fe2O3)负载在三维多级孔类石墨烯(3D HPG)上的复合材料. 3D HPG有效的导电网络有利于负载纳米Fe2O3,使其呈均匀分散状态,并有效增强纳米复合物的导电率,提高Fe2O3利用率,抑制纳米Fe2O3的团聚,从而制得稳定、高性能的锂离子电池负极材料. Fe2O3-3D HPG电极在50 mA·g-1电流密度下首次放电容量达1745 mAh·g-1,50周期放电容量保持于1095 mAh·g-1.  相似文献   

14.
采用高温固相反应法合成了Cr2O3/TiO2复合材料, 运用X射线衍射(XRD)、扫描电子显微镜(SEM)、充放电测试、循环伏安(CV)、电化学阻抗谱(EIS)等对其结构、形貌和电化学性能进行了表征. 研究结果表明: TiO2掺杂能够显著改善Cr2O3的充放电循环性能, Cr2O3/TiO2复合材料在充放电循环22周后仍有454 mAh·g-1的可逆循环容量, 容量保持率达到了73.6%, 主要归因于TiO2掺杂能够显著提高Cr2O3的电导率. Cr2O3/TiO2复合材料首次放电过程中由于电极体积膨胀导致的固体电解质相界面(SEI)膜迅速增厚和活性材料电导率的降低可能是其首次充放电过程中存在较大不可逆容量和循环容量衰减的重要原因.  相似文献   

15.
采用氧化铝修饰改性富锂锰基正极材料,探讨了表面活性剂在修饰改性中的作用。利用扫描电子显微镜、X射线衍射仪、透射电子显微镜和电化学性能测试等方法对材料结构和电化学性能进行分析。实验结果表明,十二烷基三甲基溴化铵(DTAB)能使Al_2O_3纳米颗粒均匀包覆在富锂锰基正极材料表面,有效增强了复合材料结构的稳定性。在600 mA·g~(-1)电流密度下,该复合材料的初始放电容量为186mAh·g~(-1)。经过500次循环后,其可逆放电比容量仍高于132 mAh·g~(-1),初始容量保持率高达71%。此外,电压衰退也被有效抑制,复合材料表现出优异的综合电化学性能。  相似文献   

16.
吴玥  刘兴泉  张峥  赵红远 《物理化学学报》2014,30(12):2283-2290
以氢氧化锂、乙酸锰、硝酸镁和钛酸丁酯为原料,以柠檬酸为螯合剂,采用溶胶-凝胶法制备了二价镁离子与四价钛离子等摩尔共掺杂的尖晶石型锂离子电池正极材料Li Mn1.9Mg0.05Ti0.05O4.采用热重分析(TGA),X射线衍射(XRD),扫描电子显微镜(SEM),透射电子显微镜(TEM)和电化学性能测试(包括循环伏安(CV)和电化学交流阻抗谱(EIS)测试)对所得样品的结构、形貌及电化学性能进行了表征.结果表明:780°C下煅烧12 h得到了颗粒均匀细小的尖晶石型结构的Li Mn1.9Mg0.05Ti0.05O4材料,该材料具有良好的电化学性能,在室温下以0.5C倍率充放电,在4.35-3.30 V电位范围内放电比容量达到126.8 m Ah·g-1,循环50次后放电比容量仍为118.5m Ah·g-1,容量保持率为93.5%.在55°C高温下循环30次后的放电比容量为111.9 m Ah·g-1,容量保持率达到91.9%,远远高于未掺杂的Li Mn2O4的容量保存率.二价镁离子与四价钛离子等摩尔共掺杂Li Mn2O4,改善了尖晶石锰酸锂的电子导电和离子导电性能,使其倍率性能和高温性能都得到了明显的提高.  相似文献   

17.
本文通过乙酸锂与二氧化钛反应,采用一步高温固相法在不同反应温度(750 °C/800 °C/850 °C)和反应气氛(氮气/空气)下合成Li4Ti5O12材料. 通过热重分析、X射线衍射、扫描电子显微镜、循环伏安曲线和充放电曲线分析了Li4Ti5O12的晶体结构,观察其微观形貌,并测试其电化学性能. 结果表明,800 °C氮气烧结得到的Li4Ti5O12(L-800N)材料粒径较小,该材料在1.0C倍率下的首周期放电比容量达到170.7 mAh·g-1,100周期循环后的容量保持率高达94.6%,即使是10C高倍率其首周期放电容量依然有143.0 mAh·g-1,表现出了良好的倍率和循环寿命性能.  相似文献   

18.
MOFs材料作为一类新型的锂离子电池电极材料而受到广泛关注和研究. 作者通过溶液扩散法将Co3(HCOO)6原位负载在 rGO(还原氧化石墨烯)上制备出Co3(HCOO)6@rGO复合材料. 将Co3(HCOO)6@rGO作为锂离子电池负极材料,以500 mA·g-1的电流密度恒电流充放电循环 100 周后,仍然保持有 926 mAh·g-1 的比容量,亦表现出很好的倍率性能. 循环伏安和X-射线光电子能谱测试表明,Co3(HCOO)6@rGO材料上的Co2+和甲酸根在充放电过程中均发生可逆的电化学反应. 对比同样采用溶液扩散法合成的 Co3(HCOO)6 的测试结果发现,rGO起到活化甲酸根的电化学反应的作用,同时也改善了Co3(HCOO)6的倍率性能. 将MOFs材料与rGO复合为优化 MOFs 材料的电池性能提供了一个新思路.  相似文献   

19.
Spherical Li-rich lithium manganese oxide(LMO) spinel material was synthesized by an ion implanted method assisted by polyalcohol doped with Niobium and Phosphate simultaneously.The material was characterized by scanning electron microscopy,X-ray diffraction and BET specific surface area analysis.The electrochemical performances were investigated with galvanostatic techniques and cyclic voltammetry.The synthesis process was investigated with TG/DSC.The results show that the lithium ion can be immersed into the pore of manganese dioxide at a low temperature with the ion implanted method.The prepared materials have a higher discharge capacity and better crystallization than those prepared by solid phase method.The doped Nb can improve the capacity of the Li-rich LMO spinel and reinforce the crystal growth along(111) and(400) planes.The crystal grains show circular and smooth morphology,which makes the specific surface area greatly decreased.Phosphate-doped LMO spinel exhibits good high-rate capacity and structure stability.The prepared Li_(1.09)Mn_(1.87)Nb_(0.031)O_(3.99)(PO_4)_(0.021)delivers a discharge capacity of 119mAhg~(-1) at 0.2C(1C=148mAg~(-1)) and 112.8 mAhg~(-1) at 10 C,the discharge capacity retention reaches 98% at 1 ℃ after 50 cycles at 25 ℃ and 94% at 55 ℃.  相似文献   

20.
钠具有资源丰富、成本低廉等优势,因此钠离子电池被认为是未来替代锂离子电池的最佳候选者之一。然而,寻找合适的电极材料是当前制备高性能钠离子电池面临的难题之一。在众多候选材料中,钒酸盐材料通过引入阳离子增加钒的配位数,使得材料结构的稳定性得到提高,从而改善了钠离子电池的电化学性能。本文研究了一种原位相分离法合成V_2O_5/Fe_2V_4O_(13)纳米复合材料。通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)等对电极材料形貌、组成和结构进行了表征。实验结果显示,V_2O_5/Fe_2V_4O_(13)纳米复合材料相对于V2O5纳米线材料,结构更加稳定,在0.1 A·g~(-1)电流密度下,初始放电容量由295.4 m Ah·g~(-1)提升到342 m Ah·g~(-1),循环100圈容量保持率由26.6%提高到65.8%,获得了更加优异的倍率性能(在1.0 A·g~(-1)电流密度下,容量由44 m Ah·g~(-1)提高到160 m Ah·g~(-1))。因此,V_2O_5/Fe_2V_4O_(13)纳米复合材料的研究为开拓新型高性能钠离子电池负极材料拓宽了思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号