首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we show that the maximum principle holds for quasilinear elliptic equations with quadratic growth under general structure conditions.Two typical particular cases of our results are the following. On one hand, we prove that the equation (1) {ie77-01} where {ie77-02} and {ie77-03} satisfies the maximum principle for solutions in H 1()L(), i.e., that two solutions u 1, u 2H1() L() of (1) such that u 1u2 on , satisfy u 1u2 in . This implies in particular the uniqueness of the solution of (1) in H 0 1 ()L().On the other hand, we prove that the equation (2) {ie77-04} where fH–1() and g(u)>0, g(0)=0, satisfies the maximum principle for solutions uH1() such that g(u)¦Du|{2L1(). Again this implies the uniqueness of the solution of (2) in the class uH 0 1 () with g(u)¦Du|{2L1().In both cases, the method of proof consists in making a certain change of function u=(v) in equation (1) or (2), and in proving that the transformed equation, which is of the form (3) {ie77-05}satisfies a certain structure condition, which using ((v1 -v 2)+)n for some n>0 as a test function, allows us to prove the maximum principle.  相似文献   

2.
A solution is obtained for the relationship between load, displacement and inner contact radius for an axisymmetric, spherically concave, rigid punch, indenting an elastic half-space. Analytic approximations are developed for the limiting cases in which the ratio of the inner and outer radii of the annular contact region is respectively small and close to unity. These approximations overlap well at intermediate values. The same method is applied to the conically concave punch and to a punch with a central hole. , , . , . . .  相似文献   

3.
Mathematical results are derived for the schlieren and shadowgraph contrast variation due to the refraction of light rays passing through two-dimensional compressible vortices with viscous cores. Both standard and small-disturbance solutions are obtained. It is shown that schlieren and shadowgraph produce substantially different contrast profiles. Further, the shadowgraph contrast variation is shown to be very sensitive to the vortex velocity profile and is also dependent on the location of the peak peripheral velocity (viscous core radius). The computed results are compared to actual contrast measurements made for rotor tip vortices using the shadowgraph flow visualization technique. The work helps to clarify the relationships between the observed contrast and the structure of vortical structures in density gradient based flow visualization experiments.Nomenclature a Unobstructed height of schlieren light source in cutoff plane, m - c Blade chord, m - f Focal length of schlieren focusing mirror, m - C T Rotor thrust coefficient, T/( 2 R 4) - I Image screen illumination, Lm/m 2 - l Distance from vortex to shadowgraph screen, m - n b Number of blades - p Pressure,N/m 2 - p Ambient pressure, N/m 2 - r, , z Cylindrical coordinate system - r c Vortex core radius, m - Non-dimensional radial coordinate, (r/r c ) - R Rotor radius, m - Tangential velocity, m/s - Specific heat ratio of air - Circulation (strength of vortex), m 2/s - Non-dimensional quantity, 2 82p r c 2 - Refractive index of fluid medium - 0 Refractive index of fluid medium at reference conditions - Gladstone-Dale constant, m 3/kg - Density, kg/m 3 - Density at ambient conditions, kg/m 3 - Non-dimensional density, (/ ) - Rotor solidity, (n b c/ R) - Rotor rotational frequency, rad/s  相似文献   

4.
Zusammenfassung Der lokale Stoffübergang wurde in Abhängigkeit von der Meßlänge, dem Startort und der Zulaufhöhe gemessen. Der Gültigkeitsbereich der Theorie von Nusselt wird ermittelt. Die Reynolds-Zahl nahm Werte zwischen 3,86 und 2496 an. Die örtlich wirkende Hydrodynamik ist entscheidend für das Anwachsen der örtlichen Sherwood-Zahl. Die Genauigkeit aller Versuchsergebnisse kann auf ± 5% abgeschätzt werden.
Investigation of the local mass transfer of a laminar and turbulent falling liquid film
The local mass transfer was measured as a function of the measuring length, the starting point and the liquid height above the ring-slot. The range of the Reynolds number was 3,86 Re 2496. The validity of the Nusselt theory and the range of it is shown. The local hydrodynamic is the most important factor of the increase of the local Sherwood number. The accuracy of the measurements is ± 5%.

Bezeichnungen a Temperaturleitfähigkeit m2/s=/(cp) - c Konzentration, c=¯c + c kmol/m3 - ci0 Konzentration im Flüssigkeitskern kmol/m3 - D Diffusionskoeffizient m2/s - EL-NR Elektrodennummer - Fa Faraday-Konstante A s/kgäq=96,5·106 - g Erdbeschleunigung m/s2 - iG Grenzstromdichte A/m2 - u Geschwindigkeit in x-Richtung, u= + u - U Umfang des Rohres m - v Geschwindigkeit in y-Rich- m/stung, v=¯v + v - V* Volumenstrom m3/s - x Lauflänge, Koordinate in m Strömungsrichtung - xM Meßlänge für den Stoff-Übergang m - xST Startort für den Stoff-Übergang m - y Wegkoordinate senkrecht zur Rohroberfläche m - z Wertigkeit der Elektro-denreaktion kgäq/kmol - ZH Zulaufhöhe m - Wärmeübergangskoeffizient W/m2C - Stoffübergangskoeffizient m/s - Filmdicke m - Wärmeleitfähigkeit W/(mC) - kinematische Viskosität m2/s - Re=u/=V*/U Reynolds-Zahl - Pr=/a=cp/ Prandtl-Zahl - Sc=/D Schmidt-Zahl - Nu= / Nusselt-Zahl - Sh= /D Sherwood-Zahl - SHL lokale Sherwood-Zahl - SHM mittlere Sherwood-Zahl - - zeitlich gemittelt - örtlich gemittelt Die Durchführung der Arbeit am Institut für Verfahrens — und Kältetechnik der ETH Zürich bei Prof. Dr. P. Grassmann wurde ermöglicht durch Zuschüsse der Kommission zur Förderung der wissenschaftlichen Forschung und meiner Eltern.  相似文献   

5.
Zusammenfassung Es wird eine kanonische Zustandsgleichung für Kohlendioxid in der Form des Helmholtz-Potentials mitgeteilt, die mit einem Verfahren aufgestellt wurde, das die gleichzeitige Approximation verschiedenartiger Zustandsgrößen erlaubt. Zur Ermittlung der Vorgabewerte für die Approximation wurden Meßwerte sowie Werte bereits vorliegender Gleichungen verwendet. Außerdem werden einige Temperaturfunktionen für Zustandsgrößen an den Grenzkurven und im idealen Gaszustand angegeben. Der Verlauf einiger Zustandsgrößen von Kohlendioxid wird mit dem entsprechenden Verlauf bei Wasser bzw. Wasserdampf verglichen. Es zeigt sich eine überraschend gute qualitative Übereinstimmung.
A canonical equation of state for carbon dioxide
A canonical equation of state for carbon dioxide in the form of the Helmholtz function is presented which was established by means of a method allowing the simultaneous fitting of different properties. The data points which have to be fitted are based on experimental values as well as on values of still existing equations. Several temperature functions for properties along the boundary lines and in the ideal gaseous state are given. The behaviour of some properties of state of carbon dioxide is compared with that of water substance. A surprisingly good qualitative agreement is shown.

Formelzeichen und definierte Werte A Matrix - aij Gleichungskoeffizienten - B Vektor - cp isobare spezifische Wärmekapazität - cv isochore spezifische Wärmekapazität - f spezifische freie Energie (Helmholtz-Funktion) - h spezifische Enthalpie - i, j Laufvariable - k Isentropenexponent - p Druck - t Celsius-Temperatur (t=T–T0 mit T0=273.15 K) - v spezifisches Volumen - z=pv/(RT) Realfaktor - h isenthalper Drosselkoeffizient - T isothermer Drosselkoeffizient - Dichte - IMAX obere Grenze der Laufvariablen i - JMAXi obere Grenze der Laufvariablen j (abhängig von i) - JMINi untere Grenze der Laufvariablen j (abhängig von i) - R Gaskonstante - T thermodynamische oder Kelvin-Temperatur - W Bewertungsfaktor - Anstieg der Dampfdruckkurve - =P/Pk reduzierter Druck - =T/Tk reduzierte Temperatur - =–1 transformierte reduzierte Dichte - G=1/–1 transformierte reduzierte Temperatur - =fk/Pk reduzierte spezifische freie Enthalpie - =/k reduzierte Dichte - I=R Tk k/Pk reduzierte Gaskonstante Indizes k kritischer Zustand - tr Zustand am Tripelpunkt - sub Sublimationszustand - s Sättigungszustand - flüssiger Sättigungszustand - gasförmiger Sättigungszustand - * Zustand beim Normdruck p*=1 atm - o idealer Gaszustand bei p=0 oder p=p* Herrn Professor Dr. Romano Gregorig gewidmet zum 65. Geburtstag.  相似文献   

6.
Zusammenfassung Die Dephlegmation ist eine nicht-adiabate Rektifikation ohne Rücklauf am Apparatekopf, die durch die Ackermann/Colburn-Drew-Gleichungen beschrieben werden. In diesem Beitrag wird eine vergleichende Analyse von stationären makroskopischen Modellen mit unterschiedlicher Reduktion gegeben.
On simple calculation procedures of binary mixed vapour dephlegmation
The dephlegmation is a non-adiabatic rectification without reflux at the top of the column, which for calculation can be described by the Ackermann/Colburn-Drew-equations. In this paper a comparing analysis of steady macroscopic models with different degree of model reduction is given.

Nomenklatur A Austauschfläche pro Apparate- m2/m länge - C Korrekturfunktion - D Diffusionskoeffizient m2/h - Enthalpiestrom J/h - Impulsstrom kmol m/h - N Zahl der theoretischen Trennstufen - N Molstrom kmol/h - T Temperatur °C - Molmasse kg/kmol - L Apparatelänge m - cp molare Wärmekapazität J/kmol grd - d Durchmesser m - Enthalpiestromdichte J/h m2 - g Erdbeschleunigung m/h2 - h molare Enthalpie J/kmol - j Impulsstromdichte kmol/h m - n Molstromdichte kmol/h m2 - 1 Länge m - u axiale Geschwindigkeit m/h - x Molkonzentration im Fluid kmol/kmol - y Molkonzentration im Dampf kmol/kmol - z Molkonzentration (S. G1.2) kmol/kmol - Differenz - t Kontaktzeit h - Austauschkoeffizient für die J/h m2 grd Enthalpie - ß Austauschkoeffizient für die kmol/h m2 Komponente - Austauschkoeffizient für den kmol/h m Impuls - Massendichte kg/m2 - Zähigkeit kg/m h - f Rieselfilmdicke m - f Wärmedurchgangskoeffizient J/h m2 grd Kennzahlen Re u·d·/ - Sc /·D - Sh ··d/·D Indizes a außen - d dampfseitig - f flüssigkeitsseitig - g Phasengrenze - h hydraulisch - i innen - k Kühlmedium - m mittel - o oberes Apparateende - t total - u unteres Apparateende - w Wand - x Komponente an LS im Fluid - y Komponente an LS im Dampf - gültig für große übergehende Molströme  相似文献   

7.
For thin bodies placed in a hypersonic flow at a small angle of attack the similarity law is known. From this law it follows that for various numbers M, angles of attack , and relative thicknesses the similarity conditions will be observed if in the flows under consideration the parameters M and / are the same. This similarity law is obtained with the assumption M 1, 1. But even for M=3 and 1/3 the results of solving the complete system of gasdynamic equations for affino-similar bodies is in a good agreement with the similarity law [1], In [2] it is shown that this similarity law is generalized for the case of a flow around a thin pointed body at large angles of attack. According to the similarity law, at large angles of attack the flows near bodies with an identical distribution of cross-sectional shapes will be similar if the parameters K1= cotan and K2=m sin for all cases have one and the same value. As the angle of attack decreases, the requirements of constancy of K1 and K2 become analogous to the conditions M=const, /=const.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 78–83, May–June, 1976.The authors thank V. V. Lunev for the useful discussions and valuable observations.  相似文献   

8.
A generalized formula is given for the critical heat flux, and it is shown that crises of this type are most characteristic of the boiling of organic liquids at high temperatures.Notation q* critical heat flux - q heat flux - W mean flow speed of liquid in crisis section; - Wg mass flow rate - r latent heat of evaporation - coefficient of surface tension - -@#@ density of dry saturated vapor - density of liquid on saturation line - i enthalpy of liquid on saturation line - i mean enthalpy of liquid in crisis cross section - cf coefficient of friction - g acceleration due to gravity - P static pressure in crisis cross section - T saturation temperature - T* temperature of surface of tube - mean density of liquid in crisis cross section I am indebted to I. N. Svorkova for assistance.I am also indebted to S. S. Kutateladze and A. I. Leont'ev for discussions and valuable comments.  相似文献   

9.
We examine some characteristics of hypersonic flow past slender blunt bodies of revolution at a small angle of attack 1, where is the relative body thickness. It is shown that, within the framework of hypersonic theory, for a correct-consideration of the effect of the conditions in the transitional section between the nose and the lateral surface it is necessary, in the general case, to specify the circumferential distribution of the force effect for the nose and the mass of the gas. For small , the effect of the nose, just as in two-dimensional flows [1–4], shows up only through its drag coefficient cx, for =0. On this basis, the similarity law [1–4] for flow past such bodies, with arbitrary form of the lateral surface and differing in the shape of the nose blunting, which is valid over the entire disturbed region, with the exception of a small vicinity of the nose, is extended to the case in question.The notation r0 and L maximum nose radius and characteristic body length - V, M, and density, velocity, Mach number, and adiabatic exponent of the gas in the approaching stream - , V2i, and V2p density, enthalpy, and pressure - x, r, and coordinate system of the cylindrical body with its center at the transitional section between the nose and the side surface - Vu, Vv, and Vw corresponding velocity components  相似文献   

10.
An analysis is presented for laminar source flow between parallel stationary porous disks with suction at one of the disks and equal injection at the other. The solution is in the form of an infinite series expansion about the solution at infinite radius, and is valid for all suction and injection rates. Expressions for the velocity, pressure, and shear stress are presented and the effect of the cross flow is discussed.Nomenclature a distance between disks - A, B, ..., J functions of R w only - F static pressure - p dimensionless static pressure, p(a 2/ 2) - Q volumetric flow rate of the source - r radial coordinate - r dimensionless radial coordinate, r/a - R radial coordinate of a point in the flow region - R dimensionless radial coordinate of a point in the flow region, R - Re source Reynolds number, Q/2a - R w wall Reynolds number, Va/ - reduced Reynolds number, Re/r 2 - critical Reynolds number - velocity component in radial direction - u dimensionless velocity component in radial direction, a/ - average radial velocity, Q/2a - u dimensionless average radial velocity, Re/r - ratio of radial velocity to average radial velocity, u/u - velocity component in axial direction - v dimensionless velocity component in axial direction, v - V magnitude of suction or injection velocity - z axial coordinate - z dimensionless axial coordinate, z a - viscosity - density - kinematic viscosity, / - shear stress at lower disk - shear stress at upper disk - 0 dimensionless shear stress at lower disk, - 1 dimensionless shear stress at upper disk, - dimensionless stream function  相似文献   

11.
A cylindrical annular liquid layer between two plates and around a rigid center-core consisting of incompressible and viscous liquid is subjected to different axial excitations, such as one-sided, counter-directional and double-sided unequal excitations. The response of the free liquid surface, the velocity- and pressure-distribution has been determined.
Zusammenfassung Eine zylindrische Flüssigkeitsschicht bestehend aus inkompressibler und viskoser Flüssigkeit wurde verschiedenen harmonischen Anregungsformen ausgesetzt. Dabei wurden die Fälle einseitiger, doppelseitiger entgegengesetzter und ungleicher doppelseitiger Anregung mit Phase behandelt. Die Vergrößerungsfunktionen für die freie Flüssigkeitsoberfläche, für die Geschwindigkeits- und Druckverteilung wurden bestimmt.

List of symbols a radius of liquid layer - b radius of inner cylindrical core - (ab) thickness of layer - e r , e , k unit vectors in the radial, angular and axial direction resp. - h length of layer - I m , K m modified Bessel functions of first and second kind and order m - diameter ratio - p pressure - q 2na/h - q* na/h - r, , z cylindrical coordinates - complex frequency - S sa 2/ - t time - u, w velocity components in the radial- and axial direction - 0 excitation amplitude - abbreviation - surface tension parameter - surface tension - dynamic viscosity - kinematic viscosity - density of liquid - free liquid surface elevation - dimensionless time - rz shear stress - reduced forcing frequency - forcing frequency - stream function - mn natural frequency of non-viscous liquid  相似文献   

12.
A noninvasive optical method is described which allows the measurement of the vertical component of the instantaneous displacement of a surface at one or more points. The method has been used to study the motion of a passive compliant layer responding to the random forcing of a fully developed turbulent boundary layer. However, in principle, the measurement technique described here can be used equally well with any surface capable of scattering light and to which optical access can be gained. The technique relies on the use of electro-optic position-sensitive detectors; this type of transducer produces changes in current which are linearly proportional to the displacement of a spot of light imaged onto the active area of the detector. The system can resolve displacements as small as 2 m for a point 1.8 mm in diameter; the final output signal of the system is found to be linear for displacements up to 200 m, and the overall frequency response is from DC to greater than 1 kHz. As an example of the use of the system, results detailing measurements obtained at both one and two points simultaneously are presented.List of symbols C t elastic transverse wave speed = (G/)1/2 - d + spot diameter normalized by viscous length scale - G frequency average of G() - G() shear storage modulus - G() shear loss modulus - l. viscous length scale = v/u * - N total number of sampled data values - r separation vector for 2-point measurements = (, ) - rms root-mean-square value - R momentum thickness Reynolds number = U t8/v - t time - u (y) mean streamwise component of velocity in boundary layer - u * friction velocity = (t w/)1/2 - U free-stream velocity - x, y, z longitudinal, normal and spanwise directions - y o undisturbed surface position - vertical component of compliant surface displacement - 99 boundary layer thickness for which u(y) = 0.99 U t8 - l viscous sublayer thickness 5 l * - frequency average of G()/ - boundary layer momentum thicknes = - fluid dynamic viscosity - v fluid kinematic viscosity = / - , longitudinal, spanwise components of separation vector r - fluid density - time delay - w wall shear stress  相似文献   

13.
This paper presents theoretical and experimental investigations of thermal and inertia effects on the performance of externally pressurized conical thrust bearings. The analysis, as well as the experimental results, revealed that the increase in oil temperature due to pad rotation has a detrimental effect on the load carrying capacity, while it increases the flow rate. Increasing the speed of rotation, will increase or decrease the bearing load carrying capacity depending on the recess dimensions.Nomenclature c lubricant specific heat - F frictional torque - h film thickness - L load carrying capacity - P pressure - P pressure ratio (P/P 1) - P 1 inlet pressure - Q volume flow rate - r radius measured on cone surface - r radius ratio (R/R 3) - R 1 supply hole radius - R 2 recess radius - R 3 outside radius of bearing - S inertia parameter (0.15 2 R 3 2 /P 1) - T temperature - u, v, w velocity components (see Fig. 2) - z coordinate normal to cone surface - lubricant density - lubricant viscosity - 2 cone apex angle - rotational speed - recess depth  相似文献   

14.
This paper presents a study on the deformation of anisotropic fibrous porous media subjected to moistening by water in the liquid phase. The deformation of the medium is studied by applying the concept of effective stress. Given the structure of the medium, the displacement of the solid matrix is not taken into account with respect to the displacement of the liquid phase. The transport equations are derived from the model proposed by Narasimhan. The transport coefficients and the relation between the variation in apparent density and effective stress are obtained by test measurements. A numerical model has been established and applied for studying drip moistening of mineral wool samples capable or incapable of deformation.Nomenclature D mass diffusion coefficient [L2t–1] - e void fraction - g gravity acceleration [Lt–2] - J mass transfer density [ML–2t–1] - K hydraulic conductivity [Lt–1] - K s hydraulic conductivity of the solid phase [Lt–1] - K * hydraulic conductivity of the deformable porous medium [Lt–1] - P pressure of moistening liquid [ML–1 t–2] - S degree of saturation - t time [t] - V speed [Lt–1] - X horizontal coordinate [L] - Z vertical coordinate measured from the bottom of porous medium [L] - z z-coordinate [L] Greek Letters porosity - 1 total hydric potential [L] - g gas density [ML–3] - 1 liquid density [ML–3] - 0 apparent density [ML–3] - s density of the solid phase [ML–3] - density of the moist porous medium [ML–3] - external load [ML–1t–2] - effective stress [ML–1t–2] - bishop's parameter - matrix potential or capillary suction [L] Indices g gas - 1 moistening liquid - p direction perpendicular to fiber planes - s solid matrix - t direction parallel to fiber planes - v pore Exponent * movement of solid particles taken into account  相似文献   

15.
An optical measuring method has been applied to determine the dynamic surface tension of aqueous solutions of heptanol. The method uses the frequency of an oscillating liquid droplet as an indicator of the surface tension of the liquid. Droplets with diameters in the range between 100 and 200 m are produced by the controlled break-up of a liquid jet. The temporal development of the dynamic surface tension of heptanol-water solutions is interpreted by a diffusion controlled adsorption mechanism, based on the three-layer model of Ward and Tordai. Measured values of the surface tension of bi-distilled water, and the pure dynamic and static (asymptotic) surface tensions of the surfactant solutions are in very good agreement with values obtained by classical methods.List of symbols a coefficient of intermolecular forces, Nm-1 - B adsorption constant - c o bulk concentration, mol m-3 - D apparent diffusion coefficient, m2s-1 - t time, s - T absolute temperature, K - R universal gas constant=8.314, J mol-1 K-1 - (, t) droplet contour function - o droplet equilibrium radius, m Greek symbols maximum surface excess concentration, mol m-2 - (t) droplet volume normalization function - azimuth of the polar coordinate system - density, kgm-3 - surface tension, N m-1 - (t) concentration in the subsurface, molm-3 - droplet oscillation frequency Daimler-Benz AG, Produktion & Umwelt, D-89081 UlmOn leave of absence from the Institute of Fundamental Technological Research, Polish Academy of Sciences, PL-00-049 Warszawa  相似文献   

16.
We report non-equilibrium molecular dynamics simulations of rigid and non-rigid dumbbell fluids to determine the contribution of internal degrees of freedom to strain-rate-dependent shear viscosity. The model adopted for non-rigid molecules is a modification of the finitely extensible nonlinear elastic (FENE) dumbbell commonly used in kinetic theories of polymer solutions. We consider model polymer melts — that is, fluids composed of rigid dumbbells and of FENE dumbbells. We report the steady-state stress tensor and the transient stress response to an applied Couerte strain field for several strain rates. We find that the rheological properties of the rigid and FENE dumbbells are qualitatively and quantitatively similar. (The only exception to this is the zero strain rate shear viscosity.) Except at high strain rates, the average conformation of the FENE dumbbells in a Couette strain field is found to be very similar to that of FENE dumbbells in the absence of strain. The theological properties of the two dumbbell fluids are compared to those of a corresponding fluid of spheres which is shown to be the most non-Newtonian of the three fluids considered.Symbol Definition b dimensionless time constant relating vibration to other forms of motion - F force on center of mass of dumbbell - F i force on bead i of dumbbell - F force between center of masses of dumbbells and - F ij force between beads i and j - h vector connecting bead to center of mass of dumbbell - H dimensionless spring constant for dumbbells, in units of / 2 - I moment of inertia of dumbbell - J general current induced by applied field - k B Boltzmann's constant - L angular momentum - m mass of bead, (= m/2) - M mass of dumbbell, g - N number of dumbbells in simulation cell - P translational momentum of center of mass of dumbbell - P pressure tensor - P xy xy component of pressure tensor - Q separation of beads in dumbbell - Q eq equilibrium extension of FENE dumbbell and fixed extension of rigid dumbbell - Q 0 maximum extension of dumbbell - r ij vector connecting beads i and j - r position vector of center of mass dumbbell - R vector connecting centers of mass of two dumbbells - t time - t * dimensionless time, in units of m/ - T * dimensionless temperature, in units of /k - u potential energy - u velocity vector of flow field - u x x component of velocity vector - V volume of simulation cell - X general applied field - strain rate, s–1 - * dimensionless shear rate, in units of /m 2 - general transport property - Lennard-Jones potential well depth - friction factor for Gaussian thermostat - shear viscosity, g/cms - * dimensionless shear viscosity, in units of m/ 2 - * dimensionless number density, in units of –3 - Lennard-Jones separation of minimum energy - relaxation time of a fluid - angular velocity of dumbbell - orientation angle of dumbbell   相似文献   

17.
The stress-strain isothermal hysteresis loops due to the incomplete martensitic transformation are analysed for Ti-Ni shape memory alloys. Experiments show the existence of two distinct yield lines for phase transition; one for the forward transformation austenitemartensite (AM), the other for the reverse transformation MA. The tensile behaviour of single crystals with only one yield line (AM) [1] can be considered as an ideal case. An extension of a thermodynamic model for pseudoelasticity [2] allows these two yield lines to be taken into account.
Sommario Per leghe Ti-Ni con memoria di forma vengono analizzati i cicli di isteresi isotermici tensione-deformazione prodotti da una incompleta trasformazione martensitica. Gli esperimenti mostrano l'esistenza di due distinte linee di snervamento per la transizione di fase, una verso la trasformazione austenitemartensite (AM), l'altra per la trasformazione inversa MA. Il comportamento a trazione di un singolo cristallo con una sola linea di snervamento (AM) [1], può essere considerato un caso ideale. L'estensione ad un modello termodinamico pseudo-elastico [2] consente di analizzare queste due linee di snervamento.
  相似文献   

18.
The time dependent differential equation for the local wire temperature of a constant temperature anemometer is solved by a perturbation method in case of a harmonically changing heat transfer coefficient. The time dependent power supply to the wire follows from the condition of constant mean temperature imposed by the anemometer circuit. The influence of thin supporting wires, or copper-plated wire ends, is evaluated also. Numerical results are given for a number of cases that are of practical interest.Nomenclature c specific heat - D diameter of the wire - D u diameter of the copper-plated ends of the wire - f D - g I 2 r 0 - I electric current - L length of the wire - P 1/4D 2 c - q 1/4D 2 - r resistance of the wire per unit length at temperature T' - r 0 resistance of the wire per unit length at temperature T - T T' – T - T' local temperature of the wire - T ambient temperature - T w constant mean temperature imposed by the anemometer circuit - T u local difference between the temperature of the supporting wire and the ambient temperature - t time - x axial coordinate with the origin in the middle of the wire - heat transfer coefficient - temperature coefficient of the resistance - small parameter - time constant = cD 2/4D - u time constant of the copper-plated ends cD u 2 /4D u - thermal conductivity of wire material - u thermal conductivity of the copper-plated wire ends - density - circular frequency  相似文献   

19.
The experimental technique presented is designed to obtain detailed local heat transfer data on both stationary as well as rotating disc-cavity surfaces applicable to gas turbines. The method employed utilizes thin coatings of thermochromic liquid crystals (TLC) as surface temperature indicators under aerodynamically steady but thermally transient experimental conditions. The color display of the liquid crystals is monitored by a video camera. The video signals are captured in real time by a computer-based color recognition system to extract areal temperature and heat transfer information. Some typical results are presented and compared with-literature data to illustrate the potential of the system.

List of symbols

Symbols Unit Physical property a m2/s thermal diffusivity - B - blue color signal - G - green color signal - G - rotor/stator spacing ratio z/r o - Nu ro - Nusselt number r o/ - r m radial location - r o m disc radius - R - red color signal - Re m - mass flow Reynolds number V/2zv - Re ro - rotational Reynolds number r o 2/v - t s time - T o K initial temperature - T ref K convecting fluid temperature - T s K disc surface temperature - U - color difference signal - V - color difference signal - Y - luminance signal - z m rotor/stator spacing - - spectral weight factor - W/m2 K local heat transfer coefficient - 1/K volumetric expansion coefficient - - spectral weight factor - - scaling factor - ij - Kronecker-Delta - - scaling factor - - spectral weight factor - W/m K thermal conductivity - v m2/s fluid kinematic viscosity - kg/m3 fluid density  相似文献   

20.
In this paper the flow is studied of an incompressible viscous fluid through a helically coiled annulus, the torsion of its centre line taken into account. It has been shown that the torsion affects the secondary flow and contributes to the azimuthal component of velocity around the centre line. The symmetry of the secondary flow streamlines in the absence of torsion, is destroyed in its presence. Some stream lines penetrate from the upper half to the lower half, and if is further increased, a complete circulation around the centre line is obtained at low values of for all Reynolds numbers for which the analysis of this paper is valid, being the ratio of the torsion of the centre line to its curvature.Nomenclature A =constant - a outer radius of the annulus - b unit binormal vector to C - C helical centre line of the pipe - D rL - g 1000 - K Dean number=Re2 - L 1+r sin - M (L 2+ 2 r 2)1/2 - n unit normal vector to C - P, P pressure and nondimensional pressure - p 0, p pressures of O(1) and O() - Re Reynolds number=aW 0/ - (r, , s), (r, , s) coordinates and nondimensional coordinates - nonorthogonal unit vectors along the coordinate directions - r 0 radius of the projection of C - t unit tangent vector to C - V r, V , V s velocity components along the nonorthogonal directions - Vr, V, V s nondimensional velocity components along - W 0 average velocity in a straight annulus Greek symbols , curvature and nondimensional curvature of C - U, V, W lowest order terms for small in the velocity components along the orthogonal directions t - r, , s first approximations to V r , V, V s for small - =/=/ - kinematic viscosity - density of the fluid - , torsion and nondimensional torsion of C - , stream function and nondimensional stream function - nondimensional streamfunction for U, V - a inner radius of the annulus After this paper was accepted for publication, a paper entitled On the low-Reynolds number flow in a helical pipe, by C.Y. Wang, has appeared in J. Fluid. Mech., Vol 108, 1981, pp. 185–194. The results in Wangs paper are particular cases of this paper for =0, and are also contained in [9].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号