首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
In vivo detection of carboxylic/amide carbons is a promising technique for studying cerebral metabolism and neurotransmission due to the very low RF power required for proton decoupling. In the carboxylic/amide region, however, there is severe spectral overlap between acetate C1 and glutamate C5, complicating studies that use acetate as an astroglia-specific substrate. There are no known in vivo MRS techniques that can spectrally resolve acetate C1 and glutamate C5 singlets. In this study, we propose to spectrally separate acetate C1 and glutamate C5 by a two-step J-editing technique after introducing homonuclear (13)C-(13)C scalar coupling between carboxylic/amide carbons and aliphatic carbons. By infusing [1,2-(13)C(2)]acetate instead of [1-(13)C]acetate the acetate doublet can be spectrally edited because of the large separation between acetate C2 and glutamate C4 in the aliphatic region. This technique can be applied to studying acetate transport and metabolism in brain in the carboxylic/amide region without spectral interference.  相似文献   

2.
A new operator called RESET “Reducing nuclEar Spin multiplicitiEs to singuleTs” is presented to acquire broadband proton decoupled proton spectra in one and two dimensions. Basically, the homonuclear decoupling is achieved through the application of bilinear rotation pulses and delays. A [BIRD]r,x pulse building block is used to selectively invert all proton magnetization remotely attached to 13C isotopes, which is equivalent to a scalar J decoupling of the protons directly attached to 13C from all other protons in the spin system. In conjunction with an appropriate data processing technique pure shift proton spectra are obtained. For this purpose, the concept of constant time acquisition in the observe dimension is exploited. Both ideas were merged together producing superior HSQC based pseudo 3D pulse sequences. The resulting HSQC spectra show cross peaks with collapsed multiplet structures and singlet responses for the proton chemical shift frequencies. An unambiguous assignment of signals from overcrowded spectra becomes much easier. Finally, the recently introduced SHARC technique is exploited to enhance the capability of the scalar J decoupling method. A significant reduction of the total measurement time is achieved. The time is saved by reducing the number of 13C chemical shift evolution increments and working with superimposed narrow spectral bandwidths in the 13C indirect domain.  相似文献   

3.
A method for the quantitation of cerebral metabolites on a clinical MR scanner by natural abundance13C MRSin vivois described. Proton-decoupled spectra were acquired with a power deposition within FDA guidelines using a novel coil design.myo-Inositol, quantified by a separate proton MRS, and readily detectable in13C MRS, was used as an internal reference. Normal concentrations, measured in four control subjects, age 7 months to 12 years, were glutamate 9.9 ± 0.7, glutamine 5.6 ± 1.0, and NAA 8.8 ± 2.8 mmol/kg. In a patient diagnosed with Canavan disease, examined four times, glutamate was reduced to 46% of normal, 4.6 ± 0.5 mmol/kg. NAA was increased by 50% to 13.2 ± 1.6 mmol/kg in13C MRS, consistent with the 41% increase to 12.3 ± 1.1 from control 8.7 ± 1.1 mmol/kg assayed by1H MRS. Limited concentration of glutamate may impact on glutamatergic neurons and excitatory neurotransmission in Canavan disease. Quantitation of cerebral glutamate in human brain may have clinical value in human neuropathologies in which glutamate is believed to play a central role.  相似文献   

4.
《Magnetic resonance imaging》1996,14(9):1073-1078
17O-decoupled proton MR spectroscopy and imaging with a double-tuned radiofrequency (RF) coil at 2 T was used to detect and quantify H2 17O in tissue phantoms containing various concentrations of 17O-enriched water in 5% gelatin. The pulse sequence used in these experiments consisted of a conventional proton spinecho sequence with RF irradiation at the 17O resonance frequency applied between the proton 90° pulse and the signal acquisition window. The double-tuned coil provided several advantages over systems using separate RF coils for 17O decoupling and proton excitation/detection, including ensuring that the same (or similar) sample volumes are excited and decoupled and permitting accurate calibration of the 17O decoupling pulse amplitude. The efficiency of 17O decoupling as a function of decoupling RF amplitude, decoupling duration, and decoupling resonance offset was investigated. Finally, the specific absorption rate of the 17O decoupled pulse sequence was investigated and found to lie within federal guidelines at 1.5 T.  相似文献   

5.
We have investigated the suitability and performance of various decoupling methods on systems in which an observed spin-1/2 nucleusI(13C or15N) is scalar-coupled to a quadrupolar spinS(2H). Simulations and experiments have been conducted by varying the strength of the irradiating radiofrequency (RF) field, RF offset, relaxation times, and decoupling schemes applied in the vicinity of theS-spin resonance. TheT1relaxation of the quadrupolar spin has previously been shown to influence the efficiency of continuous wave (CW) decoupling applied on resonance in such spin systems. Similarly, the performance of broadband decoupling sequences should also be affected by relaxation. However, virtually all of the more commonly used broadband decoupling schemes have been developed without consideration of relaxation effects. As a consequence, it is not obvious how one selects a suitable sequence for decoupling quadrupolar nuclei with exotic relaxation behavior. Herein we demonstrate that, despite its simplicity, WALTZ-16 decoupling is relatively robust under a wide range of conditions. In these systems it performs as well as the more recently developed decoupling schemes for wide bandwidth applications such as GARP-1 and CHIRP-95. It is suggested that in macromolecular motional regimes, broadband deuterium decoupling can be achieved with relatively low RF amplitudes (500–700 Hz) using WALTZ-16 multiple pulse decoupling.  相似文献   

6.
In solid-state proton-dipolar-decoupled19F MAS NMR spectroscopy,19F chemical-shift data need to be corrected for the Bloch–Siegert shift. Assigning the single sharp19F resonance of 2-fluoroadamantane to its proton-coupled19F shift of −174.4 ppm results in chemical-shift referencing that is independent of the amplitude of the proton-decoupling field. The Bloch–Siegert shift is also a useful tool to characterize the amplitude and homogeneity of the proton-decoupling field,H1H, and to monitor probe performance. Considerable inhomogeneity inH1Halong the long axis of the right-cylinder sample rotor was detected. In our commercial 7 mm H– F MAS probe, the proton field strength,[formula], decreases to 25% of the maximum value across the usable sample volume. Measurement of the Bloch–Siegert shift revealed that the proton-decoupling field strength decreases during the first few scans of an acquisition. Reductions in the proton field strengths can exceed 10%, and they are explained by the heating of the RF coil circuitry which is caused by high-power proton decoupling. The extent of reduction in field amplitude is a function of the decoupling duty cycle. Losses in[formula]can be avoided by tuning the probe proton RF circuitry at the operating temperature of the probe, using the Bloch–Siegert shift as an optimization parameter.  相似文献   

7.
The 3D localized13C spectroscopy methods LINEPT and LODEPT, which are modifications of INEPT and DEPT, are proposed. As long as a13C inversion pulse (180-degree pulse) is applied at 1/(4J) before the proton echo time in LINEPT and a13C excitation pulse (90-degree pulse) is applied at 1/(2J) before the proton echo time in LODEPT, the proton echo time can be set to any value longer than 1/(2J) in LINEPT and longer than 1/Jin LODEPT. As a result, the proton and the13C pulses can be applied separately and these proton pulses can be made slice-selective pulses. These localization features of LINEPT and LODEPT were evaluated using a phantom consisting of a cylinder filled with ethanol placed inside another cylinder filled with oil, and localized ethanol spectra could be obtained.In vivo3D localized13C spectra from the brain of a monkey could be obtained using decoupled LINEPT, and glutamate C-4 appeared directly after the administration of glucose C-1, followed by the appearance of glutamate C-2, C-3 and glutamine C-2, C-3, C-4.  相似文献   

8.
At high spinning speeds, standard cross polarization (CP) can be difficult due to the narrow sideband structure of the matching condition. Recent proposals have been made to broaden the matching condition with respect to the applied spin-locking field strengths through the use of simultaneous, rotor-synchronized phase inversions of the spin-locking fields (the SPICP pulse sequence), specifically as relevant to CP between 1H and 13C at spinning speeds sufficient to modulate the relevant dipolar couplings. This has been shown to effectively reduce sensitivity to RF inhomogeneity and fluctuations in overall RF power; however, the sensitivity to chemical shift (offset and anisotropy) remains. Application of the technique to the problem of polarization transfer between low-γ nuclei with large bandwidths (e.g., 13C and 15N) is therefore problematic: the transfer efficiency varies across the spectrum and is optimized for only a narrow region around resonance. A solution to this problem is presented in the form of the RFDRCP (RF-driven recoupling in CP) sequence. In this new method, rotor-synchronized (composite) π pulses are placed between the simultaneous phase inversions of the SPICP sequence to periodically invert the chemical-shift terms in the Hamiltonian, thereby removing their effects to zero order. The zero-order average Hamiltonian for this sequence is analogous to the average Hamiltonian for the homonuclear RFDR sequence. The technique has successfully been used to acquire 2D 13C-15N correlation spectra of uniformly labeled amino acids.  相似文献   

9.
Heterogeneously catalyzed enzymatic glucose isomerization was considered as a model process to extend the application of nuclear magnetic resonance (NMR) and magnetic resonance imaging techniques to the studies of biocatalytic processes and heterogeneous biocatalysts. It has been demonstrated that the T 2 times of glucose are different for its aqueous solution in the pores of an unmodified porous support and in a heterogeneous biocatalyst, comprising bacterial cells immobilized on the same support. This observation has been used to map the spatial distribution of the active component within a packed bed of biocatalyst in a model reactor. 13C NMR spectroscopy was applied to follow the progress of glucose isomerization catalyzed by the heterogeneous biocatalyst in a batch reactor. The utilization of proton spin decoupling and nuclear Overhauser effect was shown to be necessary to obtain high signal-to-noise ratio in the natural abundance 13C NMR spectra of a glucose–fructose syrup present in the packed bed of biocatalyst. The spectra thus obtained were suitable for the quantification of the glucose-to-fructose ratio achieved in the biocatalytic reaction.  相似文献   

10.
Individual polyglycans and their corresponding monomers have been studied separately for several decades. Attention has focused primarily on the modifications of these polyglycans instead of the simple relationship between the polyglycans themselves and their corresponding monomers. Two polyglycans, chitin and chitosan, were examined along with their respective monomeric units, N-acetyl-d-glucosamine (GlcNAc) and (+)d-glucosamine (GlcN) using solid-state proton decoupling Magic Angle Turning (MAT) techniques and X-Ray Powder Diffraction (XRPD). A down-field shift in isotropic 13C chemical shifts was observed for both polymers in Cross Polarization/Magic Angle Spinning (CP/MAS) spectra. An explanation of misleading peak assignments in previous NMR studies for these polyglycans was determined by comparing sideband patterns of the polymers with their corresponding monomers generated in a 2D FIve π REplicated Magic Angle Turning (FIREMAT) experiment processed by Technique for Importing Greater Evolution Resolution (TIGER). Structural changes in the crystalline framework were supported by XRPD diffraction data.  相似文献   

11.
A method for the quantitation of cerebral metabolites on a clinical MR scanner by natural abundance13C MRSin vivois described. Proton-decoupled spectra were acquired with a power deposition within FDA guidelines using a novel coil design.myo-Inositol, quantified by a separate proton MRS, and readily detectable in13C MRS, was used as an internal reference. Normal concentrations, measured in four control subjects, age 7 months to 12 years, were glutamate 9.9 ± 0.7, glutamine 5.6 ± 1.0, and NAA 8.8 ± 2.8 mmol/kg. In a patient diagnosed with Canavan disease, examined four times, glutamate was reduced to 46% of normal, 4.6 ± 0.5 mmol/kg. NAA was increased by 50% to 13.2 ± 1.6 mmol/kg in13C MRS, consistent with the 41% increase to 12.3 ± 1.1 from control 8.7 ± 1.1 mmol/kg assayed by1H MRS. Limited concentration of glutamate may impact on glutamatergic neurons and excitatory neurotransmission in Canavan disease. Quantitation of cerebral glutamate in human brain may have clinical value in human neuropathologies in which glutamate is believed to play a central role.  相似文献   

12.
The 13C nmr assignments for the antimalarial drugs chloroquine, 4-methyl primaquine, 5-methoxy-4-methylprimaquine and 5-methoxyprimaquine were established. These assignments were based on comparison with those of primaquine, proton-coupled data, and selective long-range proton decoupling.  相似文献   

13.
Total assignment of 13C and 1H NMR spectra of the 5-isopropylsulfonyl-2-norbornenes 2 was achieved using the concerted application of two-dimensional homonuclear and heteronuclear chemical shift correlations. The stereochemistry of both the diastereoisomers endo 2a and exo 2b have been established using the magnitude of the proton coupling constants.  相似文献   

14.
To understand the viscoelastic properties of cartilage tissue and for the development of tissue-engineered cartilage, we have studied the physicochemical properties of bovine nasal and pig articular cartilage by13C nuclear magnetic resonance (NMR) methods. The major macromolecular components of cartilage can be investigated individually by applying13C high-resolution (HR) NMR with scalar decoupling (for the polysaccharide component) and solid-state NMR with dipolar decoupling (for the collagen component). Partially resolved NMR spectra of the cartilage polysaccharides can be obtained by HR13C NMR indicating that these polysaccharides are highly mobile. Resonance lines have been assigned to chondroitin sulfate, the most mobile component of cartilage. To characterize time scales of molecular motions, we have measuredT 1 andT 2 relaxation times as a function of temperature and analyzed these data by means of a broad distribution of molecular correlation times. Typical correlation times for the large amplitude motions of chondroitin sulfate are of the order of 0.1–10 ns. For the detection and dynamical characterization of the cartilage collagen cross-polarization magic angle spinning (CP MAS) and high-power decoupling are indispensable.13C CP MAS spectra of cartilage are dominated by resonances from rigid collagen, while only low-intensity signals from the polysaccharides are observed. The good sensitivity at a magnetic field strength of 17.6 T allows the site-specific investigation of cartilage collagen dynamics by two-dimensional NMR methods. The cartilage collagen is essentially rigid with low-amplitude segmental motions on the fast time scale. Considering the high water content of cartilage and the almost isotropic mobility of the chondroitin sulfate molecules it is remarkable how little this affects the collagen dynamics. The dynamics of cartilage macromolecules is broadly distributed from almost completely rigid to highly mobile, which lends cartilage its mechanical strength and shock-absorbing properties.  相似文献   

15.
In this article, we show the potential for utilizing proton-detected heteronuclear single quantum correlation (HSQC) NMR in rigid solids under ultra-fast magic angle spinning (MAS) conditions. The indirect detection of carbon-13 from coupled neighboring hydrogen nuclei provides a sensitivity enhancement of 3- to 4-fold in crystalline amino acids over direct-detected versions. Furthermore, the sensitivity enhancement is shown to be significantly larger for disordered solids that display inhomogeneously broadened carbon-13 spectra. Latrodectus hesperus (Black Widow) dragline silk is given as an example where the sample is mass-limited and the sensitivity enhancement for the proton-detected experiment is 8- to 13-fold. The ultra-fast MAS proton-detected HSQC solid-state NMR technique has the added advantage that no proton homonuclear decoupling is applied during the experiment. Further, well-resolved, indirectly observed carbon-13 spectra can be obtained in some cases without heteronuclear proton decoupling.  相似文献   

16.
ABSTRACT

Four 2r-aryl-6c-phenylthian-4-ones 1b?1e and their 1-oxides 2b?2e and 1,1-dioxides 3b?3e have been newly synthesized. 1H and 13C NMR spectra have been recorded for all these compounds and 2r,6c-diphenylthian-4-one 1-oxide 2a. 13C NMR spectrum has been recorded for the sulfone 3a of 1a. For selected compounds 1H-1H COSY, HSQC, HMBC, and NOESY spectra have been recorded. The vicinal proton–proton coupling constants suggest that in all these compounds, the heterocyclic ring adopts chair conformation with equatorial orientations of the aryl and phenyl groups. Proton and carbon chemical shifts suggest that in the sulfoxides, the S=O bond is axial and enhances the J aa value by some special effect. The S = O bond causes a significant upfield shift even on carbons without hydrogens. Significant solvent shifts also were observed.  相似文献   

17.
The charge neutral chiral optical sensors 1ad containing thiourea and amide groups were synthesized by simple steps in good yields and their structures were characterized by IR, 1H NMR, 13C NMR, MS spectra and elemental analysis. The enantioselective recognition for α-phenylglycine and phenylglycinol was examined by fluorescence emission and UV-vis spectra. The fluorescence and UV-vis spectra changes of 1a were obvious when the enantiomers of α-phenylglycine anion were added, which exhibited that 1a has good enantioselective recognition ability towards α-phenylglycine. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
PurposeTo investigate metabolic exchange between 13C1-pyruvate, 13C1-lactate, and 13C1-alanine in pre-clinical model systems using kinetic modeling of dynamic hyperpolarized 13C spectroscopic data and to examine the relationship between fitted parameters and dose–response.Materials and methodsDynamic 13C spectroscopy data were acquired in normal rats, wild type mice, and mice with transgenic prostate tumors (TRAMP) either within a single slice or using a one-dimensional echo-planar spectroscopic imaging (1D-EPSI) encoding technique. Rate constants were estimated by fitting a set of exponential equations to the dynamic data. Variations in fitted parameters were used to determine model robustness in 15 mm slices centered on normal rat kidneys. Parameter values were used to investigate differences in metabolism between and within TRAMP and wild type mice.ResultsThe kinetic model was shown here to be robust when fitting data from a rat given similar doses. In normal rats, Michaelis–Menten kinetics were able to describe the dose–response of the fitted exchange rate constants with a 13.65% and 16.75% scaled fitting error (SFE) for kpyr→lac and kpyr→ala, respectively. In TRAMP mice, kpyr→lac increased an average of 94% after up to 23 days of disease progression, whether the mice were untreated or treated with casodex. Parameters estimated from dynamic 13C 1D-EPSI data were able to differentiate anatomical structures within both wild type and TRAMP mice.ConclusionsThe metabolic parameters estimated using this approach may be useful for in vivo monitoring of tumor progression and treatment efficacy, as well as to distinguish between various tissues based on metabolic activity.  相似文献   

19.
Parallel magnetic resonance imaging (pMRI) and compressed sensing (CS) have been recently used to accelerate data acquisition process in MRI. Matrix inversion (for rectangular matrices) is required to reconstruct images from the acquired under-sampled data in various pMRI algorithms (e.g., SENSE, GRAPPA) and CS. Singular value decomposition (SVD) provides a mechanism to accurately estimate pseudo-inverse of a rectangular matrix. This work proposes the use of Jacobi SVD algorithm to reconstruct MR images from the acquired under-sampled data both in pMRI and in CS. The use of Jacobi SVD algorithm is proposed in advance MRI reconstruction algorithms, including SENSE, GRAPPA, and low-rank matrix estimation in L + S model for matrix inversion and estimation of singular values. Experiments are performed on 1.5T human head MRI data and 3T cardiac perfusion MRI data for different acceleration factors. The reconstructed images are analyzed using artifact power and central line profiles. The results show that the Jacobi SVD algorithm successfully reconstructs the images in SENSE, GRAPPA, and L + S algorithms. The benefit of using Jacobi SVD algorithm for MRI image reconstruction is its suitability for parallel computation on GPUs, which may be a great help in reducing the image reconstruction time.  相似文献   

20.
A new method is described to study proton transfers on a carbon centre by means of carbon-13 N.M.R., using non-enriched samples, and without proton decoupling. As an example, the proton exchange rate k between dimethylsulphoxide and its conjugate base, the dimsyl ion, is measured at 25°C : k = 22·1 M-1 s-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号