首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arterial spin labeling (ASL) MRI, based on endogenous contrast from blood water, is used in research and diagnosis of cerebral vascular conditions. However, artifacts due to imperfect imaging conditions such as B0-inhomogeneity (ΔB0) could lead to variations in the quantification of relative cerebral blood flow (CBF). In this study, we evaluate a new approach using tagging distance dependent Z-spectrum (TADDZ) data, similar to the ΔB0 corrections in the chemical exchange saturation transfer (CEST) experiments, to remove the imaging plane B0 inhomogeneity induced CBF artifacts in ASL MRI. Our results indicate that imaging-plane B0-inhomogeneity can lead to variations and errors in the relative CBF maps especially under small tagging distances. Along with an acquired B0 map, TADDZ data helps to eliminate B0-inhomogeneity induced artifacts in the resulting relative CBF maps. We demonstrated the effective use of TADDZ data to reduce variation while subjected to systematic changes in ΔB0. In addition, TADDZ corrected ASL MRI, with improved consistency, was shown to outperform conventional ASL MRI by differentiating the subtle CBF difference in Alzheimer's disease (AD) mice brains with different APOE genotypes.  相似文献   

2.

Purpose

To evaluate whether a non-linear blood ΔR2*-versus-concentration relationship improves quantitative cerebral blood flow (CBF) estimates obtained by dynamic susceptibility contrast (DSC) MRI in a comparison with Xe-133 SPECT CBF in healthy volunteers.

Material and Methods

Linear as well as non-linear relationships between ΔR2* and contrast agent concentration in blood were applied to the arterial input function (AIF) and the venous output function (VOF) from DSC-MRI. To reduce partial volume effects in the AIF, the arterial time integral was rescaled using a corrected VOF scheme.

Results

Under the assumption of proportionality between the two modalities, the relationship CBF(MRI) = 0.58CBF(SPECT) (r = 0.64) was observed using the linear relationship and CBF(MRI) = 0.51CBF(SPECT) (r = 0.71) using the non-linear relationship.

Discussion

A smaller ratio of the VOF time integral to the AIF time integral and a somewhat better correlation between global DSC-MRI and Xe-133 SPECT CBF estimates were observed using the non-linear relationship. The results did not, however, confirm the superiority of one model over the other, potentially because realistic AIF signal data may well originate from a combination of blood and surrounding tissue.  相似文献   

3.

Purpose

To propose a simple and accurate quantitative method based on the linear relationship between magnetic resonance (MR) signal enhancement (ΔSI=SIpostcontrastSIprecontrast) and gadolinium-diethylenetriaminepentaacetic acid (Gd-DTPA) concentration (C) by using T1-weighted three-dimensional magnetization-prepared rapid acquisition gradient-echo (T1 3D MP-RAGE) sequence for the in vivo measurement of Gd-DTPA concentration in real-time neuroimaging at 3.0 T.

Methods

Phantom experiment was carried out to study the linear fitting of signal intensity change vs. Gd-DTPA concentration (ΔSI-C) curve. A goodness-of-fit test was performed to compare the accuracy between the proposed method and the conventional method based on longitudinal relaxation rate (R1=1/T1) measurement. The influences on the goodness of fit (R2) and the signal-to-noise ratio (SNR) by sequence parameters were explored. Six human subjects with different brain tumors, who underwent a Gd-DTPA-enhanced MRI, were enrolled for in vivo application of the novel method.

Results

A good linear relationship between ΔSI and Gd-DTPA concentration existed over the concentration range of 0-1 mM (R2=0.985). The linearity of the ΔSI-C curve was as good as that of the 1/T1-C curve (R2=0.988). Concentrations calculated by both methods had a strong correlation (R2=0.920). An improved linearity of the ΔSI-C curve and an increased SNR can be achieved using sequences with a shorter inversion time (TI) and a higher flip angle. The concentration range of Gd-DTPA in human brain tumors was within the quantitative scope of 0-1 mM.

Conclusions

The proposed quantitative method based on ΔSI measurement is accurate and applicable for real-time neuroimaging at 3.0 T.  相似文献   

4.
We investigated the regional and temporal changes in cerebral blood volume (CBV), cerebral blood flow (CBF), and vascular transit time in seven mongrel cats during 30 min transient focal ischemia, caused by occlusion of the middle cerebral artery. Dynamic susceptibility contrast magnetic resonance imaging was done at 4.7 T, using fast gradient echo T21 weighted imaging and intravenous injection of gadolinium-BOPTA/Dimeglumine. During occlusion, the areas showing a blood volume change were predominantly within the middle cerebral artery territory and could be divided into areas showing either CBV increases or decreases. The area with decreased blood volume also had decreased blood flow as measured by our flow-based index (p < 0.05) and was located in the central territory of the middle cerebral artery. Peripheral to this region was an area showing increased blood volume but without significant CBF changes (p > 0.05). During reperfusion, the CBF increased in the entire zone showing changes in blood volume during occlusion, and remained significantly elevated until 45 min post-occlusion, while CBV remained elevated in the hyperemic rim for at least 2 h. The presence of a peri-ischemic zone showing flow/volume mismatch identified a region wherein baseline CBF is maintained by means of compensatory vasodilatation, but where the ratio of CBF to CBV is decreased. Dynamic susceptibility contrast magnetic resonance imaging with gadolinium-BOPTA/Dimeglumine may be a valuable technique for the investigation of regional and temporal perturbations of hemodynamics during ischemia and reperfusion.  相似文献   

5.
The evolution of a photochemically induced cortical infarct was monitored using T2-, postcontrast (GdDOTA) T1-, and postcontrast (DyDTPA-BMA) T21-weighted NMR imaging techniques. Data acquired with these different NMR imaging types were compared, both qualitatively and quantitatively. The T21-weighted NMR images after sprodiamide injection (DyDTPA-BMA) were perfusion-weighted images that allowed the differentiation between several infarct-related areas in terms of different degrees of perfusion deficiency. No quantitative information on cerebral blood flow (CBF) was obtained. A clear distinction was made between areas with a complete lack of CBF located in the core of the lesion and temporary CBF insufficiencies in the rim surrounding this core. Concomitant observations on T2-weighted and postcontrast T1-weighted images revealed the same temporary rim characterized by an increased water content, and an intact blood-brain barrier (BBB), as well as by reduced perfusion. This rim appeared within the first hours after infarct induction, reached a maximum 24 h later, and lasted between 3–5 days, when its size gradually decreased until complete disappearance. These observations suggest the existence of an area at risk. Only on postcontrast T1-weighted images, the core of the lesion remained visible during the whole experimental period (10 days) and reflected in all likelihood the irreversibly damaged ischemic central core. The combined application of different NMR imaging techniques when studying focal cerebral infarctions in the rat brain allowed us to distinguish, in terms of NMR characteristics, zones of reversible from irreversible brain damage and to estimate the severity of the damage. This might offer an appropriate experimental setup for the screening of cerebroprotective compounds.  相似文献   

6.
A new method is presented for the determination of the absolute dynamic relaxation energy RD from experimental Auger parameters, the static dielectric constant and the plasmon energy of the solids. The relaxation energies of the Si 1s and 2p core levels in Si, SiC, SiO2, Si3N4 and Na2SiF6 are investigated by comparing the experimental values with theoretical results from a semiempirical dielectric theory. Both the experimental and theoretical results are valid only for the least-bound Si 2p state. The calculated relaxation shifts ΔRDea(1s) and ΔRDea(2p) are in reasonable agreement with the experimental values, and describe the extraatomic polarization effect well also for a deep level.  相似文献   

7.
Changes in the longitudinal relaxation rate (R1) may play a role in the MRI signal intensity increases that have been associated with physiological brain activation. We used gradient-echo echo-planar MRI (GRE-EPI) to test whether physiological activations associated with hypercapnia in dogs were dependent on the delay (TR) between successive images in a time-series. Our results show that, in addition to activation-induced changes in the R21 (transverse relaxation including inhomogeneity effects), activation-induced changes in R1 are significant under certain pulsing conditions. In our paradigm, the R1 contribution became significant at TR values of 1 s or less.  相似文献   

8.
The goal of this study was to optimize and validate a combined spin- and gradient-echo (SAGE) sequence for dynamic susceptibility-contrast magnetic resonance imaging to obtain hemodynamic parameters in a preclinical setting. The SAGE EPI sequence was applied in phantoms and in vivo rat brain (normal, tumor, and stroke tissue). Partial and full Fourier encoding schemes were implemented and characterized. Maps of cerebral blood volume (CBV), cerebral blood flow (CBF), mean transit time (MTT), vessel size index (VSI), volume transfer constant (Ktrans), and volume fraction of the extravascular extracellular space (ve) were obtained. Partial Fourier encoding provided shortened echo times with acceptable signal-to-noise ratio and temporal stability, thus enabling reliable characterization of T2, T2? and T1 in both phantoms and rat brain. The hemodynamic parameters CBV, CBF, and MTT for gradient-echo and spin-echo contrast were determined in tumor and stroke; VSI, Ktrans, and ve were also computed in tumor tissue. The SAGE EPI sequence allows the acquisition of multiple gradient- and spin-echoes, from which measures of perfusion, permeability, and vessel size can be obtained in a preclinical setting. Partial Fourier encoding can be used to minimize SAGE echo times and reliably quantify dynamic T2 and T2? changes. This acquisition provides a more comprehensive assessment of hemodynamic status in brain tissue with vascular and perfusion abnormalities.  相似文献   

9.
This study deals with perfusion quantification in healthy volunteers using two types of dynamic magnetic resonance imaging (MRI) methods. Absolute cerebral blood flow (CBF) measurements were performed in 11 subjects by applying both bolus tracking of exogenous contrast agent and non-invasive arterial spin labeling MRI techniques. Both methods produced CBF images with good tissue contrast and CBF values are in good agreement with literature data. The correlation between cerebral blood volume (CBV) and CBF is also discussed.  相似文献   

10.
PurposeTo demonstrate the clinical feasibility of a new non-Cartesian cylindrically-distributed spiral 3D pseudo-continuous arterial spin labeling (pCASL) magnetic resonance imaging (MRI) pulse sequence in pediatric patients in quantifying cerebral blood flow (CBF) response to an acetazolamide (ACZ) vasodilator challenge.Materials and methodsMRI exams were performed on two 3 Tesla Philips Ingenia systems using 32 channel head coil arrays. After local institutional review board approval, the 3D spiral-based pCASL technique was added to a standard brain MRI exam and evaluated in 13 pediatric patients (average age: 11.7 ± 6.4 years, range: 1.4–22.2 years). All patients were administered ACZ for clinically indicated reasons. Quantitative whole-brain CBF measurements were computed pre- and post-ACZ to assess cerebrovascular reserve.Results3D spiral pCASL data were successfully reconstructed in all 13 cases. In 11 patients, CBF increased 2.8% to 93.2% after administration of ACZ. In the two remaining patients, CBF decreased by 2.4 to 6.0% after ACZ. The group average change in CBF due to ACZ was approximately 25.0% and individual changes were statistically significant (p < 0.01) in all patients using a paired t-test analysis. CBF perfusion data were diagnostically useful in supporting conventional MR angiography and clinical findings.Conclusion3D cylindrically-distributed spiral pCASL MRI provides a robust approach to assess cerebral blood flow and reserve in pediatric patients.  相似文献   

11.
Accurate and noninvasive quantification of regional cerebral blood perfusion (CBF) of the human brain tissue would advance the study of the complex interplay between human brain structure and function, in both health and disease. Despite the plethora of works on CBF in gray matter, a detailed quantitative white matter perfusion atlas has not been presented on healthy adults using the International Consortium for Brain Mapping atlases. In this study, we present a host of assurance measures such as temporal stability, spatial heterogeneity and age effects of regional and global CBF in selected deep, cortical gray matter and white matter tracts identified and quantified using diffusion tensor imaging (DTI). We utilized whole brain high-resolution DTI combined with arterial spin labeling to quantify regional CBF on 15 healthy adults aged 23.2–57.1 years. We present total brain and regional CBF, corresponding volume, mean diffusivity and fractional anisotropy spatial heterogeneity, and dependence on age as additional quality assurance measures to compare with published trends using both MRI and nuclear medicine methods. Total CBF showed a steady decrease with age in gray matter (r=?0.58; P= .03), whereas total CBF of white matter did not significantly change with age (r= 0.11; P= .7). This quantitative report offers a preliminary baseline of CBF, volume and DTI measurements for the design of future multicenter and clinical studies utilizing noninvasive perfusion and DT-MRI.  相似文献   

12.
The local structure distortion and the spin Hamiltonian (SH) parameters, including the zero-field splitting (ZFS) parameter D and the Zeeman g-factors g and g, are theoretically investigated by means of complete diagonalization method (CDM) and the microscopic spin Hamiltonian theory for tetragonal charge compensation CrF5O defect center in Cr3+:KMgF3 crystals. The superposition model (SPM) calculations are carried out to provide the crystal field (CF) parameters. This investigation reveals that the replacement of O2− for F and its induced lattice relaxation Δ1(O2−) combined with an inward relaxation of the nearest five fluorine Δ2(F) give rise to a strong tetragonal crystal field, which in turn results in the large ZFS and large anisotropic g-factor Δg. The experimental SH parameters D and Δg can be reproduced well by assuming that O2− moves towards the central ion Cr3+ by Δ1(O2−)=0.172R0 and the five F ions towards the central ion Cr3+ by Δ2(F)=0.022R0. Our approach takes into account the spin-orbit (SO) interaction as well as the spin-spin (SS), spin-other-orbit (SOO), and orbit-orbit (OO) interactions omitted in previous studies. This shows that although the SO interaction is the most important one, the contributions to the SH parameters from other three magnetic interactions are appreciable and should not be omitted, especially for the ZFS parameter D.  相似文献   

13.
BackgroundThe aim of this study was to investigate changes in structural magnetic resonance imaging (MRI) according to the RANO criteria and perfusion- and permeability related metrics derived from dynamic contrast-enhanced MRI (DCE) and dynamic susceptibility contrast MRI (DSC) during radiochemotherapy for prediction of progression and survival in glioblastoma.MethodsTwenty-three glioblastoma patients underwent biweekly structural and perfusion MRI before, during, and two weeks after a six weeks course of radiochemotherapy. Temporal trends of tumor volume and the perfusion-derived parameters cerebral blood volume (CBV) and blood flow (CBF) from DSC and DCE, in addition to contrast agent capillary transfer constant (Ktrans) from DCE, were assessed. The patients were separated in two groups by median survival and differences between the two groups explored. Clinical- and MRI metrics were investigated using univariate and multivariate survival analysis and a predictive survival index was generated.ResultsMedian survival was 19.2 months. A significant decrease in contrast-enhancing tumor size and CBV and CBF in both DCE- and DSC-derived parameters was seen during and two weeks past radiochemotherapy (p < 0.05). A 10%/30% increase in Ktrans/CBF two weeks after finishing radiochemotherapy resulted in significant shorter survival (13.9/16.8 vs. 31.5/33.1 months; p < 0.05). Multivariate analysis revealed an index using change in Ktrans and relative CBV from DSC significantly corresponding with survival time in months (r2 = 0.843; p < 0.001).ConclusionsSignificant temporal changes are evident during radiochemotherapy in tumor size (after two weeks) and perfusion-weighted MRI-derived parameters (after four weeks) in glioblastoma patients. While DCE-based metrics showed most promise for early survival prediction, a multiparametric combination of both DCE- and DSC-derived metrics gave additional information.  相似文献   

14.

Introduction

The bolus-tracking (BT) technique is the most popular perfusion-weighted (PW) dynamic susceptibility contrast MRI method used for estimating cerebral blood flow (CBF), cerebral blood volume and mean transit time. The BT technique uses a convolution model that establishes the input–output relationship between blood flow and the vascular tracer concentration. Singular value decomposition (SVD)- and Fourier transform (FT)-based deconvolution methods are popular and widely used for estimating PW MRI parameters. However, from the published literature, it appears that SVD is more widely accepted than other methods. In a previous article, an FT-based minimum mean-squared error (MMSE) technique was proposed and simulation experiments were performed to compare it with the well-established circular SVD (oSVD) method. In this study, the FT-based MMSE method has been used to estimate relative CBF (rCBF) in 13 patients with white matter lesions (WMLs) (leukoaraiosis), and results are compared with the widely used oSVD method.

Materials and Methods

Thirteen patients with leukoaraiosis were imaged on a 1.5-T Siemens whole-body scanner. After acquiring the localizer and structural scans consisting of FLAIR (fluid attenuated with inversion recovery), T1-weighted and T2-weighted images, perfusion study was implemented as part of the MRI protocol. For each patient and method, two values were calculated: (a) rCBF for normal white matter (NWM) ROI, obtained by dividing the average CBF value in NWM ROI with average CBF in gray matter (GM) ROI, and (b) rCBF for WML ROI, obtained by dividing the average CBF value in WML ROI with average CBF in GM ROI. Results for the two deconvolution methods were computed.

Results and Discussion

A significant (P<.05) decrease in estimated rCBF was observed in the WML in all the patients using the MMSE method, while for the oSVD method, the decrease was observed in all but one patient. Initial results suggest that the MMSE method is comparable to the oSVD method for estimating rCBF in NMW while it may be better than oSVD for estimating rCBF in lesions of low flow. Studies involving a larger patient population may be required to further validate the findings of this work.  相似文献   

15.
准连续性动脉自旋标记技术(pCASL)是一种新兴的动脉自旋标记脑灌注成像技术(ASL):一方面,它克服了连续性动脉自旋标记技术(CASL)需要独立发射线圈的硬件限制;另一方面,也避免了脉冲式动脉自旋标记技术(PASL)带来的标记效率低的影响.为了在 1.5 T 磁共振系统上开发一款可稳定应用于临床扫描的 pCASL 序列;并使用该序列准确获得反
应灌注功能的局部脑血流量值(Regional Cerebral Blood Flow, rCBF).该文利用水模测试pCASL 序列,验证了标记部分的标记性能并通过人体实验,优化了协议中标记位置中心到成像层面中心的距离和标记部分结束点到成像脉冲开始前的等待时间这两项参数.基于优化了参数的 pCASL 协议,扫描 12 组正常志愿者,观测灌注信号分布情况,并对特定灰质区域定量计算,对比不同个体该区域的 rCBF 值.通过人体实验,经验性地确定了延迟时间为 1 200 ms、标记距离为 70 mm 时灌注图像的信噪比达到最优.将两项优化后的参数存入协议中,并使用协议扫描,共获取 12 组结果,其中的 10 组都表明灌注信号稳定均匀,并且灰质区域的 CBF 值同经验结果一致.该工作在1.5 T 的磁共振系统上成功实现了 pCASL序列,经优化参数后的协议扫描,可以获得准确稳定的脑部灌注信号.
  相似文献   

16.
Hyperpolarized (hp) 83Kr (spin I = 9/2) is a promising gas-phase contrast agent that displays sensitivity to the surface chemistry, surface-to-volume ratio, and surface temperature of the surrounding environment. This proof-of-principle study demonstrates the feasibility of ex vivo hp 83Kr magnetic resonance imaging (MRI) of lungs using natural abundance krypton gas (11.5% 83Kr) and excised, but otherwise intact, rat lungs located within a custom designed ventilation chamber. Experiments comparing the 83Kr MR signal intensity from lungs to that arising from a balloon with no internal structure inflated to the same volume with krypton gas mixture suggest that most of the observed signal originated from the alveoli and not merely the conducting airways. The 83Kr longitudinal relaxation times in the rat lungs ranged from 0.7 to 3.7 s but were reproducible for a given lung. Although the source of these variations was not explored in this work, hp 83Kr T1 differences may ultimately lead to a novel form of MRI contrast in lungs. The currently obtained 1200-fold signal enhancement for hp 83Kr at 9.4 T field strength is found to be 180 times below the theoretical upper limit.  相似文献   

17.
A room temperature nuclear magnetic resonance force microscope (MRFM), fitted in a 1 tesla electromagnet, has been used to measure the nuclear spin relaxation of 1H in a micron-size (70 ng) crystal of ammonium sulfate. NMR sequences, combining both pulsed and continuous wave radio-frequency fields, have allowed us to measure mechanically T2 and T1, the transverse and longitudinal spin relaxation times. Because two spin species with different T1 values are measured in our 7 μm thick crystal, magnetic resonance imaging of their spatial distribution inside the sample section have been performed. To understand quantitatively the measured signal, we carefully study the influence of spin-lattice relaxation and non-adiabaticity of the continuous-wave sequence on the intensity and time dependence of the detected signal. Received 23 February 2000  相似文献   

18.
PurposeInvestigation of the feasibility of the R2 mapping techniques by using latest theoretical models corrected for confounding factors and optimized for signal to noise ratio.Theory and methodsThe improvement of the performance of state of the art magnetic resonance imaging (MRI) relaxometry algorithms is challenging because of a non-negligible bias and still unresolved numerical instabilities. Here, R2 mapping reconstructions, including complex fitting with multi-spectral fat-correction by using single-decay and double-decay formulation, are deeply studied in order to investigate and identify optimal configuration parameters and minimize the occurrence of numerical artifacts. The effects of echo number, echo spacing, and fat/water relaxation model type are evaluated through both simulated and in-vivo data. We also explore the stability and feasibility of the fat/water relaxation model by analyzing the impact of high percentage of fat infiltrations and local transverse relaxation differences among biological species.ResultsThe main limits of the MRI relaxometry are the presence of bias and the occurrence of artifacts, which significantly affect its accuracy. Chemical-shift complex R2-correct single-decay reconstructions exhibit a large bias in presence of a significant difference in the relaxation rates of fat and water and with fat concentration larger than 30%. We find that for fat-dominated tissues or in patients affected by extensive iron deposition, MRI reconstructions accounting for multi-exponential relaxation time provide accurate R2 measurements and are less prone to numerical artifacts.ConclusionsComplex fitting and fat-correction with multi-exponential decay formulation outperforms the conventional single-decay approximation in various diagnostic scenarios. Although it still lacks of numerical stability, which requires model enhancement and support from spectroscopy, it offers promising perspectives for the development of relaxometry as a reliable tool to improve tissue characterization and monitoring of neuromuscular disorders.  相似文献   

19.
Assessment of hemodynamics in arteriovenous malformations (AVMs) is important for estimating the risk of bleeding as well as planning and monitoring therapy. In tissues with perfusion values significantly higher than cerebral cortex, continuous arterial spin labeling (CASL) permits both adequate representation and quantification of perfusion. Thirteen patients who had cerebral AVMs were examined with two magnetic resonance imaging (MRI) techniques: perfusion imaging using a CASL technique with two delay times, 800 and 1200 ms, and T2-weighted dynamic contrast-enhanced MRI (T2-DCE-MRI). The signal-to-noise ratio obtained in our study with the CASL technique at 3 T was sufficient to estimate perfusion in gray matter. Both nidal and venous perfusion turned out larger by factors of 1.71±2.01 and 2.48±1.51 in comparison to T2-DCE-MRI when using CASL at delay times of 800 and 1200 ms, respectively. Moreover, the venous and nidal perfusion values of the AVMs measured at T2-DCE-MRI did not correlate with those observed at CASL. Evaluation of average perfusion values yielded significantly different results when using a shorter versus a longer delay time. Average gray matter perfusion was 15.8% larger when measured at delay times of w=800 ms versus w=1200 ms, while nidal perfusion was 15.7% larger and venous perfusion was 34.6% larger, respectively.In conclusion, the extremely high perfusion within an AVM could be successfully quantified using CASL. A shorter postlabeling delay time of w=800 ms seems to be more appropriate than a longer time of w=1200 ms because of possible inflow of unlabeled spins at the latter.  相似文献   

20.
PurposeTissue microstructure can influence quantitative magnetic resonance imaging such as relaxation rate measurements. Consequently, relaxation rate mapping can provide useful information on tissue microstructure. In this work, the theory on relaxation mechanisms of the change of the relaxation rate ∆R2 in the presence of spherical susceptibility sources in a spin bearing medium is validated in simulations and phantom experiments for the coexistence of two species of susceptibility sources.MethodsThe influence of coexisting spherical perturbers with magnetic susceptibilitys of different signs was evaluated in Monte Carlo simulations including diffusion effects in the surrounding medium. Simulations were compared with relaxometry measurements at 1.5 Tesla and at 3 Tesla. The phantoms used to validate the simulations were built from agarose gel containing calcium carbonate and tungsten carbide particles of different size and concentration.ResultsThe Monte Carlo simulations showed, that the change in relaxation rate only depends on the overall amount of susceptibility producing structures in the simulation volume and no difference was found, if mixtures of positive and negative particles were simulated. Phantom measurements within the static dephasing regime showed linear additivity of the effects from positive and negative susceptibility sources that were present within the same voxel.ConclusionsIn summary, both the simulations and the phantom measurements showed that changes in the relaxation rate ΔR2 add up linearly for spherical particles with different susceptibilities within the same voxel if the conditions for the static dephasing regime are fulfilled. If particles with different susceptibilities have both different sizes and violate the conditions of the static dephasing regime, effects on relaxation rates might no longer be linear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号