首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT: BACKGROUND: There is growing evidence for the idea of fMRI activation in white matter. In the current study, we compared hemodynamic response functions (HRF) in white matter and gray matter using 4 T fMRI. White matter fMRI activation was elicited in the isthmus of the corpus callosum at both the group and individual levels (using an established interhemispheric transfer task). Callosal HRFs were compared to HRFs from cingulate and parietal activation. RESULTS: Examination of the raw HRF revealed similar overall response characteristics. Finite impulse response modeling confirmed that the WM HRF characteristics were comparable to those of the GM HRF, but had significantly decreased peak response amplitudes. CONCLUSIONS: Overall, the results matched a priori expectations of smaller HRF responses in white matter due to the relative drop in cerebral blood flow (CBF) and cerebral blood volume (CBV). Importantly, the findings demonstrate that despite lower CBF and CBV, white matter fMRI activation remained within detectable ranges at 4 T.  相似文献   

2.
Multiple sclerosis (MS) causes demyelinating lesions in the white matter and increased iron deposition in the subcortical gray matter. Myelin protons have an extremely short T2* (< 1 ms) and are not directly detected with conventional clinical magnetic resonance (MR) imaging sequences. Iron deposition also reduces T2*, leading to reduced signal on clinical sequences. In this study we tested the hypothesis that the inversion recovery ultrashort echo time (IR-UTE) pulse sequence can directly and simultaneously image myelin and iron deposition using a clinical 3 T scanner. The technique was first validated on a synthetic myelin phantom (myelin powder in D2O) and a Feridex iron phantom. This was followed by studies of cadaveric MS specimens, healthy volunteers and MS patients. UTE imaging of the synthetic myelin phantom showed an excellent bi-component signal decay with two populations of protons, one with a T2* of 1.2 ms (residual water protons) and the other with a T2* of 290 μs (myelin protons). IR-UTE imaging shows sensitivity to a wide range of iron concentrations from 0.5 to ~ 30 mM. The IR-UTE signal from white matter of the brain of healthy volunteers shows a rapid signal decay with a short T2* of ~ 300 μs, consistent with the T2* values of myelin protons in the synthetic myelin phantom. IR-UTE imaging in MS brain specimens and patients showed multiple white matter lesions as well as areas of high signal in subcortical gray matter. This in specimens corresponded in position to Perl's diaminobenzide staining results, consistent with increased iron deposition. IR-UTE imaging simultaneously detects lesions with myelin loss in the white matter and iron deposition in the gray matter.  相似文献   

3.
Passband balanced steady state free precession (b-SSFP) fMRI employs the flat portion of the SSFP off-resonance response to obtain microscopic susceptibility changes elicited by changes in blood oxygenation following enhancement in neuronal activity. This technique can reduce geometric distortion and signal dropout while maintaining rapid acquisition and high signal-to-noise ratio (SNR) compared with traditional fMRI techniques. In the study, we developed a novel multi-phase passband b-SSFP fMRI technique that can achieve a spatial resolution of a few mm3 and a high temporal sampling rate of 50 ms per slice at 7 Tesla. This technique was further applied for an event-related (ER) fMRI paradigm. As a comparison, gradient-echo echo-planar imaging (GE-EPI) with similar spatial resolution and temporal sampling rate was carried out for the same ER-fMRI experiment. Experiments with visual cortex stimulation were carried out at 7 Tesla to demonstrate whether the multi-phase b-SSFP technique and GE-EPI are able to differentiate temporal delays in hemodynamic response function (HRF) separated by 100 ms in stimulus onset. Consistent with ERP results, the upslope of the HRF of both techniques can differentiate 100 ms delay in stimulus onset, with the former showing a lower level of intersubject variability. The present study demonstrated that the multi-phase passband b-SSFP fMRI technique can be applied for resolving neuronal events on the order of 100 ms at ultrahigh magnetic fields.  相似文献   

4.
The increased signal-to-noise ratio (SNR) offered by functional Magnetic Resonance Imaging (fMRI) at 7T allows the acquisition of functional data at sub-millimetric spatial resolutions. However, simply reducing partial volume effects is not sufficient to precisely localize task-induced activation due to the indirect mechanisms that relate brain function and the changes in the measured signal.In this work T2* and T2 weighted Echo Planar Imaging (EPI) schemes based on Gradient Recalled Echo (GRE) and Spin Echo (SE) were evaluated in terms of temporal SNR, percent signal change, contrast to noise ratio (CNR), activation volume, and sensitivity and specificity to gray matter. Datasets were acquired during visual stimulation at in-plane resolutions ranging between 1.5 × 1.5 mm2 and 0.75 × 0.75 mm2 targeting the early visual cortex.While similar activation foci were obtained in all acquisitions, at in-plane resolutions of 1.0 × 1.0 mm2 and larger voxel sizes the T2 weighted contrast of SE-EPI allowed the identification of the activation site with better spatial accuracy. However, at sub-millimetric resolutions the decrease in temporal SNR significantly hampered the sensitivity and the extent of the activation site. On the other hand, high resolution T2* weighted data collected with GRE-EPI provided higher CNR and sensitivity, benefiting from the decreased physiological and partial volume effects. However, spurious activations originating from regions of blood drainage were still present in GRE data, and simple thresholding techniques were found to be inadequate for the removal of such contributions. The combination of 2-class and 3-class automated segmentations, performed directly in EPI space, allowed the selection of active voxels in gray matter. This approach could enable GRE-EPI to accurately map functional activity with satisfactory CNR and specificity to the true site of activation.  相似文献   

5.
ObjectiveThe purpose of this study was to correlate brain metabolism assessed shortly after therapeutic hyperthermia by 1H magnetic resonance spectroscopy (MRS), with neurodevelopmental outcome.MethodsAt the age of 6.0 ± 1.8 days, brain metabolites of 35 term asphyxiated newborns, treated with therapeutic hypothermia, were quantified by multivoxel proton MRS of a volume cranial to the corpus callosum, containing both gray and white matter. At the age of 30 months the Bayley Scale of Infant Development-III was performed.ResultsInfants that died had lower gray matter NAA levels than infants that survived (P = 0.005). In surviving infants (28 of 35) there was a trend of negative correlation between gray matter choline levels and gross motor outcome (r =  0.45). In the white matter, choline correlated negatively with fine motor skills (r =  0.40), and creatine positively with gross motor skills (r = 0.58, P = 0.02). There was no relationship between lactate levels and outcome.ConclusionMRS of asphyxiated neonates treated by therapeutic hypothermia can serve as predictor of outcome. Unlike previously reported associations in untreated asphyxiates, lactate levels had no relationship with outcome, which indicates that one of the working mechanisms of therapeutic hypothermia is reduction of the metabolic rate.  相似文献   

6.
Accurate and noninvasive quantification of regional cerebral blood perfusion (CBF) of the human brain tissue would advance the study of the complex interplay between human brain structure and function, in both health and disease. Despite the plethora of works on CBF in gray matter, a detailed quantitative white matter perfusion atlas has not been presented on healthy adults using the International Consortium for Brain Mapping atlases. In this study, we present a host of assurance measures such as temporal stability, spatial heterogeneity and age effects of regional and global CBF in selected deep, cortical gray matter and white matter tracts identified and quantified using diffusion tensor imaging (DTI). We utilized whole brain high-resolution DTI combined with arterial spin labeling to quantify regional CBF on 15 healthy adults aged 23.2–57.1 years. We present total brain and regional CBF, corresponding volume, mean diffusivity and fractional anisotropy spatial heterogeneity, and dependence on age as additional quality assurance measures to compare with published trends using both MRI and nuclear medicine methods. Total CBF showed a steady decrease with age in gray matter (r=?0.58; P= .03), whereas total CBF of white matter did not significantly change with age (r= 0.11; P= .7). This quantitative report offers a preliminary baseline of CBF, volume and DTI measurements for the design of future multicenter and clinical studies utilizing noninvasive perfusion and DT-MRI.  相似文献   

7.
PurposeThe dependence of the direction-averaged diffusion-weighted imaging (DWI) signal in brain was studied as a function of b-value in order to help elucidate the relationship between diffusion weighting and brain microstructure.MethodsHigh angular resolution diffusion imaging (HARDI) data were acquired from two human volunteers with 128 diffusion-encoding directions and six b-value shells ranging from 1000 to 6000 s/mm2 in increments of 1000 s/mm2. The direction-averaged signal was calculated for each shell by averaging over all diffusion-encoding directions, and the signal was plotted as a function of b-value for selected regions of interest. As a supplementary analysis, similar methods were also applied to retrospective DWI data obtained from the human connectome project (HCP), which includes b-values up to 10,000 s/mm2.ResultsFor all regions of interest, a simple power law relationship accurately described the observed dependence of the direction-averaged signal as a function of the diffusion weighting. In white matter, the characteristic exponent was 0.56 ± 0.05, while in gray matter it was 0.88 ± 0.11. Comparable results were found with the HCP data.ConclusionThe direction-averaged DWI signal varies, to a good approximation, as a power of the b-value, for b-values between 1000 and 6000 s/mm2. The exponents characterizing this power law behavior were markedly different for white and gray matter, indicative of sharply contrasting microstructural environments. These results may inform the construction of microstructural models used to interpret the DWI signal.  相似文献   

8.
ObjectivesTo investigate normative value and age-related change of brain magnetic resonance T1ρ relaxation at 1.5 T.MethodsThis study was approved by the local ethical committee with participants' written consent obtained. There were 42 adults healthy volunteers, including 20 males (age: 41 ± 16 (mean ± standard deviation) years, range: 22–68 years,) and 22 females (age: 39 ± 15 years, range: 21–62 years). MRI was performed at 1.5 T using 3D fluid suppressed turbo spin echo sequence. Regions-of-interests (ROIs) were obtained by atlas-based tissue segmentation and T1ρ was calculated by fitting the mean value to mono-exponential model. Correlation between T1ρ relaxation of brain gray matter regions and age was investigated.ResultsA regional difference among individual gray matter areas was noted; the highest values were observed in the hippocampus (98.37 ± 5.37 ms, median: 97.88 ms) and amygdala (94.95 ± 4.34 ms, median: 94.73 ms), while the lowest values were observed in the pallidum (83.81 ± 5.49 ms, median: 83.77 ms) and putamen (83.93 ± 4.76 ms, median: 83.99 ms). Gray matter T1ρ values decreased slowly (mean slope: − 0.256) and significantly (p < 0.05) with age in gray matter for subjects younger than 40 years old, while for subjects older than 40 years old there was no apparent correlation between T1ρ relaxation and age. Global white matter measured T1ρ value of 88.65 ± 3.47 ms (median: 87.86 ms), and the correlation with age was not significant (p = 0.18).ConclusionGray matter T1ρ relaxation demonstrates a bi-phase change with age in adults of 22–68 years.  相似文献   

9.
In this paper, we aimed to investigate the feasibility of direct visualization of myelin, including myelin lipid and myelin basic protein (MBP), using two-dimensional ultrashort echo time (2D UTE) sequences and utilize phase information as a contrast mechanism in phantoms and in volunteers. The standard UTE sequence was used to detect both myelin and long T2 signal. An adiabatic inversion recovery UTE (IR-UTE) sequence was used to selectively detect myelin by suppressing signal from long T2 water protons. Magnitude and phase imaging and T2* were investigated on myelin lipid and MBP in the forms of lyophilized powders as well as paste-like phantoms with the powder mixed with D2O, and rubber phantoms as well as healthy volunteers. Contrast to noise ratio (CNR) between white and gray matter was measured. Both magnitude and phase images were generated for myelin and rubber phantoms as well white matter in vivo using the IR-UTE sequence. T2* values of ~ 300 μs were comparable for myelin paste phantoms and the short T2* component in white matter of the brain in vivo. Mean CNR between white and gray matter in IR-UTE imaging was increased from − 7.3 for the magnitude images to 57.4 for the phase images. The preliminary results suggest that the IR-UTE sequence allows simultaneous magnitude and phase imaging of myelin in vitro and in vivo.  相似文献   

10.
PurposeTo implement and evaluate interleaved blip-up, blip-down, non-segmented 3D echo planar imaging (EPI) with pseudo-continuous arterial spin labeling (pCASL) and post-processing for reduced susceptibility artifact cerebral blood flow (CBF) maps.Materials and methods3D EPI non-segmented acquisition with a pCASL labeling sequence was modified to include alternating k-space coverage along phase encoding direction (referred to as “blip-reversed”) for alternating dynamic acquisitions of control and label pairs. Eight volunteers were imaged on a 3T scanner. Images were corrected for distortion using spatial shifting transformation of the underlying field map. CBF maps were calculated and compared with maps obtained without blip reversal using matching gray matter (GM) images from a high resolution 3D scan. Additional benefit of using the correction for alternating blip-up and blip-down acquisitions was assessed by comparing to corrected blip-up only and corrected blip-down only CBF maps. Matched Student t-test of overlapping voxels for the eight volunteers was done to ascertain statistical improvement in distortion.ResultsMean CBF value in GM for the eight volunteers from distortion corrected CBF maps was 50.8 ± 9.9 ml/min/100 gm tissue. Corrected CBF maps had 6.3% and 4.1% more voxels in GM when compared with uncorrected blip up (BU) and blip down (BD) images, respectively. Student t-test showed significant reduction in distortion when compared with blip-up images and blip-down images (p < 0.001). When compared with corrected BU and corrected BD only CBF maps, BU and BD corrected maps had 2.3% and 1% more voxels (p = 0.006 and 0.04, respectively).ConclusionPseudo-continuous arterial spin labeling with non-segmented 3D EPI acquisition using alternating blip-reversed k-space traversal and distortion correction provided significantly better matching GM CBF maps. In addition, employing alternating blip-reversed acquisitions during pCASL acquisition resulted in statistically significant improvement over corrected blip-up and blip-down CBF maps.  相似文献   

11.
Functional MRI (fMRI) has evolved from simple observations of regional changes in MRI signals caused by cortical activity induced by a task or stimulus, to task-free acquisitions of images in a resting state. Such resting state signals contain low frequency fluctuations which may be correlated between voxels, and strongly correlated regions are deemed to reflect functional connectivity within synchronized circuits. Resting state functional connectivity (rsFC) measures have been widely adopted by the neuroscience community, and are being used and interpreted as indicators of intrinsic neural circuits and their functional states in a broad range of applications, both basic and clinical. However, there has been relatively little work reported that validates whether inter-regional correlations in resting state fluctuations of fMRI (rsfMRI) signals actually measure functional connectivity between brain regions, or to establish how MRI data correlate with other metrics of functional connectivity. In this mini-review, we summarize recent studies of rsFC within mesoscopic scale cortical networks (100 μm–10 mm) within a well defined functional region of primary somatosensory cortex (S1), as well as spinal cord and brain white matter in non-human primates, in which we have measured spatial patterns of resting state correlations and validated their interpretation with electrophysiological signals and anatomic connections. Moreover, we emphasize that low frequency correlations are a general feature of neural systems, as evidenced by their presence in the spinal cord as well as white matter. These studies demonstrate the valuable role of high field MRI and invasive measurements in an animal model to inform the interpretation of human imaging studies.  相似文献   

12.
PurposeAim of this retrospective study was to compare diagnostic accuracy of proposed automatic normalization method to quantify the relative cerebral blood volume (rCBV) with existing contra-lateral region of interest (ROI) based CBV normalization method for glioma grading using T1-weighted dynamic contrast enhanced MRI (DCE-MRI).Material and methodsSixty patients with histologically confirmed gliomas were included in this study retrospectively. CBV maps were generated using T1-weighted DCE-MRI and are normalized by contralateral ROI based method (rCBV_contra), unaffected white matter (rCBV_WM) and unaffected gray matter (rCBV_GM), the latter two of these were generated automatically. An expert radiologist with > 10 years of experience in DCE-MRI and a non-expert with one year experience were used independently to measure rCBVs. Cutoff values for glioma grading were decided from ROC analysis. Agreement of histology with rCBV_WM, rCBV_GM and rCBV_contra respectively was studied using Kappa statistics and intra-class correlation coefficient (ICC).ResultThe diagnostic accuracy of glioma grading using the measured rCBV_contra by expert radiologist was found to be high (sensitivity = 1.00, specificity = 0.96, p < 0.001) compared to the non-expert user (sensitivity = 0.65, specificity = 0.78, p < 0.001). On the other hand, both the expert and non-expert user showed similar diagnostic accuracy for automatic rCBV_WM (sensitivity = 0.89, specificity = 0.87, p = 0.001) and rCBV_GM (sensitivity = 0.81, specificity = 0.78, p = 0.001) measures. Further, it was also observed that, contralateral based method by expert user showed highest agreement with histological grading of tumor (kappa = 0.96, agreement 98.33%, p < 0.001), however; automatic normalization method showed same percentage of agreement for both expert and non-expert user. rCBV_WM showed an agreement of 88.33% (kappa = 0.76,p < 0.001) with histopathological grading.ConclusionIt was inferred from this study that, in the absence of expert user, automated normalization of CBV using the proposed method could provide better diagnostic accuracy compared to the manual contralateral based approach.  相似文献   

13.
The blood oxygen level-dependent (BOLD) effect is extensively used for functional MRI (fMRI) but presents some limitations. Diffusion-weighted fMRI (DfMRI) has been proposed as a method more tightly linked to neuronal activity. This work proposes a protocol of DfMRI acquired for several b-values and diffusion directions that is compared to gradient-echo BOLD (GE-BOLD) and to repeated spin-echo BOLD (SE-BOLD, acquisitions performed with b = 0 s/mm2), which was also used to ensure the reproducibility of the response.A block stimulation paradigm of the primary visual system (V1) was performed in 12 healthy subjects with checkerboard alternations (2 Hz frequency). DfMRI was performed at 3 T with 5 b-values (b = 1500, 1000, 500, 250, 0 s/mm2) with TR/TE = 1004/93 ms, Δ/δ = 45.4 ms/30 ms, and 6 spatial directions for diffusion measures. GE-BOLD was performed with a similar block stimulation design timing. Apparent Diffusion Coefficient (ADC)-fMRI was computed with all b-values used. An identical Z-score level was used for all fMRI modalities for the comparison of volumes of activation. ADC-fMRI and SE-BOLD fMRI activation locations were compared in a voxel-based analysis to a cytoarchitectural probability map of V1.SE-BOLD activation volumes represented only 55% of the GE-BOLD activation volumes (P < 0.0001). DfMRI activation volumes averaged for all b-values acquired represented only 12% of GE-BOLD (P < 0.0001) and only 22% of SE-BOLD activation volumes (P < 0.005). Compared to SE-BOLD-fMRI, ADC-fMRI activations showed fewer pixels outside of V1 and a higher average probability of belonging to V1.DfMRI and ADC-fMRI acquisition at 3 T could be easily post-processed with common neuro-imaging software. DfMRI and ADC-fMRI activation volumes were significantly smaller than those obtained with SE-BOLD. ADC-fMRI activations were more precisely localized in V1 than those of SE-BOLD-fMRI. This validated the increased capability of ADC-fMRI compared to BOLD to enhance the precision of localizing an fMRI activation in the cyto-architectural zone V1, thereby justifying the use of ADC-fMRI for neuro-scientific studies.  相似文献   

14.
《Ultrasonics sonochemistry》2014,21(4):1549-1556
This paper reports on the sonochemical synthesis of zinc oxide (ZnO) nanophosphors (NPr) at different ultrasonication times (5 min, 30 min, 1 h, 5 h, 10 h and 15 h) for near white light emission applications. X-ray photoelectron spectroscopy indicated that the O1s peak consists of two components. These were O1 (ZnO) and O2 (deficient oxygen; OH groups) centred at 529.7 ± 0.3 eV and 531.1 ± 0.3 eV, respectively. All samples showed UV and defect level emission (DLE). The DLE enhancement was due to the increase in oxygen related defects such as oxygen vacancies/interstitials. Due to the combination of near UV and DLE near white light emission in ZnO NPr was obtained. The emission could be tuned with different ultrasonic times. It was found that the ultrasonication time influenced the growth mechanism and luminescence properties of the ZnO NPr.  相似文献   

15.
RGB pixels by microcavity top-emitting organic light-emitting diode (TOLED) is beneficial to both minimizing the loss of light and improving the color purity and the efficiency. Based on the multi-emitting layers, white organic light-emitting diodes (OLEDs) and microcavity TOLEDs were prepared. TOLEDs were fabricated using Ag/ITO as the reflector and adjusting layer, Al/Ag as semi-transparent cathode, Alq:DCJTB/TBADN:TBPe/Alq:C545 as white light emitting layer. By adjusting the thickness of ITO, optical length of cavity and the color of the device have been changed. So we get RGB tricolor devices. The peak wavelengths are 476 nm, 539 nm, 601 nm, Commission Internationale d’Eclairage (CIE) coordinates are (0.133, 0.201), (0.335, 0.567), (0.513, 0.360), FWHM are 32 nm, 50 nm, 73 nm for blue, green and red, respectively.  相似文献   

16.
AimTo assess the value of callosal morphological and microstructural integrity in assessing different cognitive domains, fatigue and depression in mildly disabled multiple sclerosis (MS) patients.Materials and methodsWe assessed 29 mildly disabled MS patients and 15 healthy controls using 3T magnetic resonance images (T1-weighted, FLAIR and DTI) and neuropsychological tests assessing different cognitive functions, depression and fatigue. We compared the added value of morphological measures (corpus callosum area corrected for total intracranial volume, index, circularity and the more detailed thickness profile) and diffusion features (fractional anisotropy and mean diffusivity) in multilinear models including standard clinical and whole-brain parameters in assessing neuropsychological scores.ResultsEven in mildly disabled MS patients, a significant reduction of the corpus callosum (p < 0.001) was observed in comparison to healthy controls. Callosal area, index and circularity were significantly (p < 0.002) related to whole-brain white matter volume, T2 lesion load and deep grey matter volume, but not with cortical grey matter.The combination of commonly used imaging and clinical parameters explained between 7% (Fatigue) and 50% (processing speed, verbal memory) of the adjusted variance. Inclusion of the mean diffusivity increased the adjusted R2 significantly to 69% (p = 0.004) and 71% (p = 0.002) for visuospatial and verbal memory respectively.ConclusionOur results show that callosal features may be used as an alternative to measuring whole-brain volumes. Furthermore, the microstructural integrity of the corpus callosum can help to predict an MS patient's memory performance.  相似文献   

17.

Background  

It is generally believed that activation in functional magnetic resonance imaging (fMRI) is restricted to gray matter. Despite this, a number of studies have reported white matter activation, particularly when the corpus callosum is targeted using interhemispheric transfer tasks. These findings suggest that fMRI signals may not be neatly confined to gray matter tissue. In the current experiment, 4 T fMRI was employed to evaluate whether it is possible to detect white matter activation. We used an interhemispheric transfer task modelled after neurological studies of callosal disconnection. It was hypothesized that white matter activation could be detected using fMRI.  相似文献   

18.
Color characteristics of the E- and O-modes in the fringe-field switching mode using the liquid crystal with negative dielectric anisotropy have been investigated. According to calculated and measured results for color shift up to 70° of polar angle in all directions, a cell with E-mode shows smaller color shift with varying viewing direction than a cell with O-mode in all grey levels, for instance, the color shift in a white state is much smaller in the E-mode (Δxy = 0.1819) than in the O-mode (Δxy = 0.0798). However, the color shift of the white state is strongly suppressed for both E-mode (Δxy = 0.0199) and O-mode (Δxy = 0.0093) with a dual domain structure.  相似文献   

19.
Quantitative myelin water imaging (MWI) from signal T2* decay acquired with multiple Gradient-Recalled Echo (mGRE) sequence has been widely used since its first report. A recent study showed that with low resolution data (2 mm isotropic voxels), direct application of complex fitting to a three-pool WM model with frequency shift terms could produce more stable parameter estimation for myelin water fraction mapping. MWI maps of higher spatial resolution resulting in more detailed tissue structures and reduced partial volume effects around white matter/gray matter (WM/GM) interface, however, is more desirable. Furthermore, as signal-to-noise ratio (SNR) of original images decreases due to reduced voxel size, the direct complex fitting procedure of myelin water imaging becomes more prone to systematic errors which severely compromised stability and reliability of the result. Instead of using the original part of T2* decay, this work presents a new method based on the WM-induced phase from tissue susceptibility calculated with the same mGRE dataset, in a three-pool WM model (water of myelin, axonal and extracellular water), to improve high resolution MWI. Compared with direct complex fitting for the higher spatial resolution case, the proposed method is shown to provide a more stable and accurate estimation of MWI parameters, and finer details near WM/GM boundaries with greatly reduced partial volume effects.  相似文献   

20.
To clarify the role of solubilized organics derived from drinking water treatment sludge (DWTS) in the elimination of natural organic matter (NOM) in the DWTS recycling process, a probe sonoreactor at a frequency of 25 kHz was used to solubilize the organics at varied specific energies. The coagulation behavior related to NOM removal in recycling the sonicated DWTS with and without solubilized organics was evaluated, and the effect on organic fractionations in coagulated water was determined. The study results could provide useful implications in designing DWTS recycling processes that avoid the enrichment of organic matter. Our results indicate that DWTS was disrupted through a low release of soluble chemical oxygen demand (SCOD) and proteins, which could deteriorate the coagulated water quality under the specific energy of 37.87–1212.1 kW h/kg TS. The optimal coagulation behavior for NOM removal was achieved by recycling the sonicated DWTS without solubilized organics at 151.5 kW h/kg TS specific energy. Recycling the sonicated DWTS could increase the enrichment potential of weakly hydrophobic acid, hydrophilic matter, and <3 kDa fractions; the enrichment risks could be reduced by discharging the solubilized organics. Fluorescent characteristic analysis indicated that when recycling the sonicated DWTS without solubilized organics, the removal of humic-like substances was limited, whereas removal of protein-like substances was enhanced, lowering the enrichment potential of protein-like substances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号