首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PurposeZero padding is a well-studied interpolation technique that improves image visualization without increasing image resolution. This interpolation is often performed as a last step before images are displayed on clinical workstations. Here, we seek to demonstrate the importance of zero padding before rather than after performing non-linear post-processing algorithms, such as Quantitative Susceptibility Mapping (QSM). To do so, we evaluate apparent spatial resolution, relative error and depiction of multiple sclerosis (MS) lesions on images that were zero padded prior to, in the middle of, and after the application of the QSM algorithm.Materials and MethodsHigh resolution gradient echo (GRE) data were acquired on twenty MS patients, from which low resolution data were derived using k-space cropping. Pre-, mid-, and post-zero padded QSM images were reconstructed from these low resolution data by zero padding prior to field mapping, after field mapping, and after susceptibility mapping, respectively. Using high resolution QSM as the gold standard, apparent spatial resolution, relative error, and image quality of the pre-, mid-, and post-zero padded QSM images were measured and compared.ResultsBoth the accuracy and apparent spatial resolution of the pre-zero padded QSM was higher than that of mid-zero padded QSM (p < 0.001; p < 0.001), which was higher than that of post-zero padded QSM (p < 0.001; p < 0.001). The image quality of pre-zero padded reconstructions was higher than that of mid- and post-zero padded reconstructions (p = 0.004; p < 0.001).ConclusionZero padding of the complex GRE data prior to nonlinear susceptibility mapping improves image accuracy and apparent resolution compared to zero padding afterwards. It also provides better delineation of MS lesion geometry, which may improve lesion subclassification and disease monitoring in MS patients.  相似文献   

2.
ObjectiveThe purpose of this study was to correlate brain metabolism assessed shortly after therapeutic hyperthermia by 1H magnetic resonance spectroscopy (MRS), with neurodevelopmental outcome.MethodsAt the age of 6.0 ± 1.8 days, brain metabolites of 35 term asphyxiated newborns, treated with therapeutic hypothermia, were quantified by multivoxel proton MRS of a volume cranial to the corpus callosum, containing both gray and white matter. At the age of 30 months the Bayley Scale of Infant Development-III was performed.ResultsInfants that died had lower gray matter NAA levels than infants that survived (P = 0.005). In surviving infants (28 of 35) there was a trend of negative correlation between gray matter choline levels and gross motor outcome (r =  0.45). In the white matter, choline correlated negatively with fine motor skills (r =  0.40), and creatine positively with gross motor skills (r = 0.58, P = 0.02). There was no relationship between lactate levels and outcome.ConclusionMRS of asphyxiated neonates treated by therapeutic hypothermia can serve as predictor of outcome. Unlike previously reported associations in untreated asphyxiates, lactate levels had no relationship with outcome, which indicates that one of the working mechanisms of therapeutic hypothermia is reduction of the metabolic rate.  相似文献   

3.
PurposeTo evaluate the perfusion parameters of inner and outer myometrium in healthy nulliparous and primiparous women who are and who are not currently using hormonal contraceptives by means of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI).Material and methodsWe performed pelvic 1.5 T DCE-MRI on 98 women: 18 nulliparous non-users, 30 nulliparous users, 12 primiparous non-users and 38 primiparous users of hormonal contraception (mean age respectively 26.4, 25.8, 30.23 and 28.18 years). The nulliparous non-users underwent DCE-MRI investigations during their follicular, ovulatory and luteal phase. Perfusion parameters (iAUC/volume, Ktrans, Kep and Ve) were assessed in the anterior and posterior junctional zone (JZ), outer myometrium and cervix.ResultsIn nulliparous non-users, the mean Ktrans and iAUC/volume showed a decrease from follicular to luteal phase (0.82 vs 0.55 min 1 for Ktrans, p = 0/027 and 1.28 vs 0.68 for iAUC/volume, p < 0.001). The anterior JZ demonstrated lower Ktrans (p = 0.050) and higher Kep (p = 0.012), in nulliparous non-users, lower Ktrans in nulliparous users (p < 0.001) and lower Ve in primiparous users (p = 0.012) than the anterior outer myometrium. Ktrans at the anterior and posterior JZ wall in nulliparous users was lower than in non-users (p = 0.001 and p = 0.013) and Ve at the anterior JZ wall in primiparous users was lower than in non-users (p = 0.044).ConclusionThis study provides data on normal perfusion parameters of inner and outer myometrium, which may be potentially useful in assisted reproductive therapy.  相似文献   

4.
PurposeTo determine magnetic resonance elastography (MRE)-derived stiffness of pancreas in healthy volunteers with emphasis on: 1) short term and midterm repeatability; and 2) variance as a function of age.MethodsPancreatic MRE was performed on 22 healthy volunteers (age range:20–64 years) in a 3 T–scanner. For evaluation of reproducibility of stiffness estimates, the scans were repeated per volunteer on the same day (short term) and one month apart (midterm). MRE wave images were analyzed using 3D inversion to estimate the stiffness of overall pancreas and different anatomic regions (i.e., head, neck, body, and tail). Concordance and Spearman correlation tests were performed to determine reproducibility of stiffness measurements and relationship to age.ResultsA strong concordance correlation (ρc = 0.99; p-value < 0.001) was found between short term and midterm repeatability pancreatic stiffness measurements. Additionally, the pancreatic stiffness significantly increased with age with good Spearman correlation coefficient (all ρ > 0.81; p < 0.001). The older age group (> 45 yrs) had significantly higher stiffness compared to the younger group (≤ 45 yrs) (p < 0.001). No significant difference (p > 0.05) in stiffness measurements was observed between different anatomical regions of pancreas, except neck stiffness was slightly lower (p < 0.012) compared to head and overall pancreas at month 1.ConclusionMRE-derived pancreatic stiffness measurements are highly reproducible in the short and midterm and increase linearly with age in healthy volunteers. Further studies are needed to examine these effects in patients with various pancreatic diseases to understand potential clinical applications.  相似文献   

5.
PurposeTo quantify the differential plasma flow- (Fp-) and permeability surface area product per unit mass of tissue- (PS-) weighting in forward volumetric transfer constant (Ktrans) estimates by using a low molecular (Gd-DTPA) versus high molecular (Gadomer) weight contrast agent in dynamic contrast enhanced (DCE) MRI.Materials and methodsDCE MRI was performed using a 7T animal scanner in 14 C57BL/6J mice syngeneic for TRAMP tumors, by administering Gd-DTPA (0.9 kD) in eight mice and Gadomer (35 kD) in the remainder. The acquisition time was 10 min with a sampling rate of one image every 2 s. Pharmacokinetic modeling was performed to obtain Ktrans by using Extended Tofts model (ETM). In addition, the adiabatic approximation to the tissue homogeneity (AATH) model was employed to obtain the relative contributions of Fp and PS.ResultsThe Ktrans values derived from DCE-MRI with Gd-DTPA showed significant correlations with both PS (r2 = 0.64, p = 0.009) and Fp (r2 = 0.57, p = 0.016), whereas those with Gadomer were found only significantly correlated with PS (r2 = 0.96, p = 0.0003) but not with Fp (r2 = 0.34, p = 0.111). A voxel-based analysis showed that Ktrans approximated PS (< 30% difference) in 78.3% of perfused tumor volume for Gadomer, but only 37.3% for Gd-DTPA.ConclusionsThe differential contributions of Fp and PS in estimating Ktrans values vary with the molecular weight of the contrast agent used. The macromolecular contrast agent resulted in Ktrans values that were much less dependent on flow. These findings support the use of macromolecular contrast agents for estimating tumor vessel permeability with DCE-MRI.  相似文献   

6.
IntroductionIn recent years, differences have emerged in the treatment of squamous and non-squamous non-small cell lung carcinomas (NSCLCs). This highlights the importance of accurate histopathologic classification. However, there remains inter-observer disagreement when making diagnoses based on histology. Fractal dimension (FD) is a mathematical measure of irregularity and complexity of shape. We hypothesize that the FD of carcinoma epithelial architecture can assist in differentiating adenocarcinoma (ADC) from squamous cell carcinoma (SCC) of the lung.Methods134 resected (88 ADC and 46 SCC) cases of resected early-stage NSCLC were analyzed. Tissue micro arrays were generated from formalin-fixed paraffin-embedded tissue, stained with pan-cytokeratin, and digitally imaged and the FD of the epithelial structure calculated. Mean FD of ADC and SCC were compared using the independent t-test, partial correlations, and receiver operating characteristic (ROC) analyses.ResultsA statistically significant difference (p < 0.001) between the mean FD of ADC (M = 1.70, SD = 0.07) and SCC (M = 1.78, SD = 0.07) was found. Significance remained (p < 0.001) when controlling for several possible confounders. ROC analysis demonstrated an area-under-the-curve of 0.81 (p < 0.001).ConclusionsThe epithelial structure FD of NSCLC has potential as a reproducible and automated measure to help subtype NSCLCs into ADC and SCC. With further image analysis algorithm improvements, fractal analysis may be a component in computerized histomorphological assessments of lung cancer and may provide an adjunct test in differentiating NSCLCs.  相似文献   

7.
PurposeBiochemical imaging of glycosaminoglycan chemical exchange saturation transfer (gagCEST) could predict the depletion of glycosaminoglycans (GAG) in early osteoarthritis. The purpose of this study was to evaluate the relationship between the magnetization transfer ratio asymmetry (MTRasym) of gagCEST images and visual analog scale (VAS) pain scores in the knee joint.Materials and methodsThis retrospective study was approved by the institutional review board. A phantom study was performed using hyaluronic acid to validate the MTRasym values of gagCEST images. Knee magnetic resonance (MR) images of 22 patients (male, 9; female, 13; mean age, 50.3 years; age range; 25–79 years) with knee pain were included in this study. The MR imaging (MRI) protocol involved standard knee MRI as well as gagCEST imaging, which allowed region-of-interest analyses of the patellar facet and femoral trochlea. The MTRasym at 1.0 ppm was calculated at each region. The cartilages of the patellar facets and femoral trochlea were graded according to the Outerbridge classification system. Data regarding the VAS scores of knee pain were collected from the electronic medical records of the patients. Statistical analysis was performed using Spearman's correlation.ResultsThe results of the phantom study revealed excellent correlation between the MTRasym values and the concentration of GAGs (r = 0.961; p = 0.003). The cartilage grades on the MR images showed significant negative correlation with the MTRasym values in the patellar facet and femoral trochlea (r = −0.460; p = 0.031 and r = −0.543; p = 0.009, respectively). The VAS pain scores showed significant negative correlation with the MTRasym values in the patellar facet and femoral trochlea (r = −0.435; p = 0.043 and r = −0.671; p = 0.001, respectively).ConclusionThe pain scores were associated with the morphological and biochemical changes in articular cartilages visualized on knee MR images. The biochemical changes, visualized in terms of the MTRasym values of the gagCEST images, exhibited greater correlation with the pain scores than the morphological changes visualized on conventional MR images; these results provide evidence supporting the theory regarding the association of patellofemoral osteoarthritis with knee pain scores.  相似文献   

8.
BackgroundAssessment of muscle atrophy and fatty degeneration in brachial plexus injury (BPI) could yield valuable insight into pathophysiology and could be used to predict clinical outcome. The objective of this study was to quantify and relate fat percentage and cross-sectional area (CSA) of the biceps to range of motion and muscle force of traumatic brachial plexus injury (BPI) patients.MethodsT1-weighted TSE sequence and three-point Dixon images of the affected and non-affected biceps brachii were acquired on a 3 Tesla magnetic resonance scanner to determine the fat percentage, total and contractile CSA of 20 adult BPI patients. Regions of interest were drawn by two independent investigators to determine the inter-observer reliability. Paired Students' t-test and multivariate analysis were used to relate fat percentage, total and contractile CSA to active flexion and biceps muscle force.ResultsThe mean fat percentage 12 ± 5.1% of affected biceps was higher than 6 ± 1.0% of the non-affected biceps (p < 0.001). The mean contractile CSA 8.1 ± 5.1 cm2 of the affected biceps was lower than 19.4 ± 4.9 cm2 of the non-affected biceps (p < 0.001). The inter-observer reliability was excellent (ICC 0.82 to 0.96). The contractile CSA contributed most to the reduction in active flexion and muscle force.ConclusionQuantitative measurement of fat percentage, total and contractile CSA using three-point Dixon sequences provides an excellent reliability and relates with active flexion and muscle force in BPI.  相似文献   

9.
ObjectivesWe validate a 4D strategy tailored for 3 T clinical systems to simultaneously quantify function and infarct size in wild type mice after ischemia/reperfusion, with improved spatial and temporal resolution by comparison to previous published protocols using clinical field MRI systems.MethodsC57BL/6J mice underwent 60 min ischemia/reperfusion (n = 14) or were controls without surgery (n = 6). Twenty-four hours after surgery mice were imaged with gadolinium injection and sacrificed for post-mortem MRI and histology with serum also taken for Troponin I levels. The double ECG- and respiratory-triggered 3D FLASH (Fast Low Angle Shot) gradient echo (GRE) cine sequence had an acquired isotropic resolution of 344 μm, TR/TE of 7.8/2.9 ms and acquisition time 25–35 min. The conventional 2D FLASH cine sequence had the same in-plane resolution of 344 μm, 1 mm slice thickness and TR/TE 11/5.4 ms for an acquisition time of 20–25 min plus 5 min for planning. Left ventricle (LV) and right ventricle (RV) volumes were measured and functional parameters compared 2D to 3D, left to right and for inter and intra observer reproducibility. MRI infarct volume was compared to histology.ResultsFor the function evaluation, the 3D cine outperformed 2D cine for spatial and temporal resolution. Protocol time for the two methods was equivalent (25–35 min). Flow artifacts were reduced (p = 0.008) and epi/endo-cardial delineation showed good intra and interobserver reproducibility. Paired t-test comparing ejection volume left to right showed no significant difference for 3D (p = 0.37), nor 2D (p = 0.30) and correlation slopes of left to right EV were 1.17 (R2 = 0.75) for 2D and 1.05 (R2 = 0.50) for 3D.Quantifiable ‘late gadolinium enhancement’ infarct volume was seen only with the 3D cine and correlated to histology (R2 = 0.89). Left ejection fraction and MRI-measured infarct volume correlated (R2 > 0.3).ConclusionsThe 4D strategy, with contrast injection, was validated in mice for function and infarct quantification from a single scan with minimal slice planning.  相似文献   

10.
PurposeQuantification of myocardial oxygenation (MO) in heart failure (HF) has been less than satisfactory. This has necessitated the use of invasive techniques to measure MO directly or to determine the oxygen demand during exercise using the cardiopulmonary exercise (CPX) test. We propose a new quantification method for MO using blood-oxygen-level-dependent (BOLD) myocardial T2* magnetic resonance imaging (M-T2* MRI), and investigate its correlation with CPX results.MethodsThirty patients with refractory HF who underwent cardiac MRI and CPX test for heart transplantation, and 24 healthy, age-matched volunteers as controls were enrolled. M-T2* imaging was performed using a 3-Tesla and multi-echo gradient-echo sequence. M-T2* was calculated by fitting the signal intensity data for the mid-left ventricular septum to a decay curve. M-T2* was measured under room-air (T2*-air) and after inhalation of oxygen for 10 min at a flow rate of 10 L/min (T2*-oxy). MO was defined as the difference between the two values (ΔT2*). Changes in M-T2* at the two conditions and ΔT2* between the two groups were compared. Correlation between ΔT2* and CPX results was analyzed using the Pearson coefficient.ResultsT2*-oxy was significantly greater than T2*-air in patients with HF (29.9 ± 7.3 ms vs. 26.7 ± 6.0 ms, p < 0.001), whereas no such difference was observed in controls (25.5 ± 4.0 ms vs. 25.4 ± 4.4 ms). ΔT2* was significantly greater for patients with HF than for controls (3.2 ± 4.5 ms vs. -0.1 ± 1.3 ms, p < 0.001). A significant correlation between ΔT2* and CPX results (peak VO2, r =  0.46, p < 0.05; O2 pulse, r =  0.54, p < 0.005) was observed.ConclusionΔT2* is increased T2*-oxy is greater in patients with HF, and is correlated with oxygen metabolism during exercise as measured by the CPX test. Hence, ΔT2* can be used as a surrogate marker of MO instead of CPX test.  相似文献   

11.
IntroductionWheelchair Users (WCUs) depend on their upper extremities for their daily living. Therefore, it is not unusual to find that shoulder pain (SP) is a problem for WCUs and reduces their participation in sport and leisure activities.ObjectivesThe aims of this study were 1 – to analyse skin temperature measured by infrared thermography (IRT) before (pre-test), one minute after (post-test) and 10 min after (post-10) the kinematic wheelchair propulsion test (T-CIDIF) of athletic wheelchair users; 2 – to evaluate the relationship between shoulder pain (SP) and Skin Temperature Asymmetry (ΔTsk) before and after (pre-test, post-test, post-10) the T-CIDIF, and to relate the SP with the kinematic variables of the T-CIDIF.Participants & interventions/procedureA volunteer sample of 12 wheelchair athletes completed an exercise test (T-CIDIF) in their own wheelchair. It consisted in a 30-s maximum test performed on two rollers. Two linear transducers connected to the rollers registered the number of propulsions, maximum and mean velocity and power of each arm. SP was assessed with the Wheelchair Users Shoulder Pain Index (WUSPI). Skin temperature (Tsk) of the anterior and posterior upper body was measured before and after the T-CIDIF by using an infrared camera. A total of 26 ROIs were evaluated with respect to the opposite side of the body to identify significant (ΔTsk).Results/main outcome measure(s)Significant differences were observed between the Tsk of the post-10 and pre-test in 12 ROIs, and between the post-10 and the post-test in most of the ROIs. These differences are attenuated when the ΔTsk is compared before and after exercise. Tsk tends to initially decrease immediately after the test and then significantly increase after 10 min of completing the T-CIDIF. The ΔTsk vs SP analysis yielded significant inverse relationships (from r = −0.58 to r = −0.71, p < 0.05) in 5 of the 26 ROI. No significant correlations between propulsion variables and SP questionnaire were found. All T-CIDIF variables were significantly correlated with the temperature asymmetries in multiple ROIs (from r = −0.86 to r = −0.58, from p < 0.05 to p < 0.001).ConclusionsThese results present indications that high performance wheelchair athletes exhibit similar capacity of heat production than able-bodied. The thermographic data inversely correlates with the SP and the kinematic variables, but the last is not related to SP. This work contributes to improve the understanding about temperature changes in wheelchair athletes during exercise, and could be used to assess the efficacy of various sports and rehabilitation programs.  相似文献   

12.
AimsTo develop a high-resolution, 3D late gadolinium enhancement (LGE) cardiovascular magnetic resonance imaging (MRI) technique for improved assessment of myocardial scars, and evaluate its performance against 2D breath-held (BH) LGE MRI using a surgically implanted animal scar model in the right ventricle (RV).Methods and resultsA k-space segmented 3D LGE acquisition using CENTRA-PLUS (Contrast ENhanced Timing Robust Acquisition with Preparation of LongitUdinal Signal; or CP) ordering is proposed. 8 pigs were surgically prepared with cardiac patch implantation in the RV, followed in 60 days by 1.5 T MRI. LGE with Phase-Sensitive Inversion Recovery (PSIR) were performed as follows: 1) 2DBH using pneumatic control, and 2) navigator-gated, 3D free-breathing (3DFB)-CP-LGE with slice-tracking. The animal heart was excised immediately after cardiac MR for scar volume quantification. RV scar volumes were also delineated from the 2DBH and 3DFB-CP-LGE images for comparison against the surgical standard. Apparent scar/normal tissue signal-to-noise ratio (aSNR) and contrast-to-noise ratio (aCNR) were also calculated.3DFB-CP-LGE technique was successfully performed in all animals. No difference in aCNR was noted, but aSNR was significantly higher using the 3D technique (p < 0.05). Against the surgical reference volume, the 3DFB-CP-LGE-derived delineation yielded significantly less volume quantification error compared to 2DBH-derived volumes (15 ± 10% vs 55 ± 33%; p < 0.05).ConclusionCompared to conventional 2DBH-LGE, 3DFB-LGE acquisition using CENTRA-PLUS provided superior scar volume quantification and improved aSNR.  相似文献   

13.
Currently several therapeutic applications of ultrasound in cancer treatment are under progress which uses cavitation phenomena to deliver their effects. There are several methods to evaluate cavitation activity such as chemical dosimetry and measurement of subharmonic signals. In this study, the cavitation activity induced by the ultrasound irradiation on exposure parameters has been measured by terephthalic acid chemical dosimetry and subharmonic analysis. Experiments were performed in the near 1 MHz fields in the progressive wave mode and effect of duty cycles changes with 2 W/cm2 intensity (ISATA) and acoustic intensity changes in continuous mode on both fluorescence intensity and subharmonic intensity were measured. The dependence between fluorescence intensity of terephthalic acid chemical dosimetry and subharmonic intensity analysis were analyzed by Pearson correlation (p-value < 0.05). It has been shown that the subharmonic intensity and the fluorescence intensity for continuous mode is higher than for pulsing mode (p-value < 0.05). Also results show that there is a significant difference between the subharmonic intensity and the fluorescence intensity with sonication intensity (p-value < 0.05). A significant correlation between the fluorescence intensity and subharmonic intensity at different duty cycles (R = 0.997, p-value < 0.05) and different intensities (R = 0.985, p-value < 0.05) were shown. The subharmonic intensity (μW/cm2) significantly correlated with the fluorescence intensity (count) (R = 0.901; p < 0.05) and the fluorescence intensity due to chemical dosimetry could be estimated with subharmonic intensity due to subharmonic spectrum analysis. It is concluded that there is dependence between terephthalic acid chemical dosimetry and subharmonic spectrum analysis to examine the acoustic cavitation activity.  相似文献   

14.
PurposeTo demonstrate the clinical feasibility of a new non-Cartesian cylindrically-distributed spiral 3D pseudo-continuous arterial spin labeling (pCASL) magnetic resonance imaging (MRI) pulse sequence in pediatric patients in quantifying cerebral blood flow (CBF) response to an acetazolamide (ACZ) vasodilator challenge.Materials and methodsMRI exams were performed on two 3 Tesla Philips Ingenia systems using 32 channel head coil arrays. After local institutional review board approval, the 3D spiral-based pCASL technique was added to a standard brain MRI exam and evaluated in 13 pediatric patients (average age: 11.7 ± 6.4 years, range: 1.4–22.2 years). All patients were administered ACZ for clinically indicated reasons. Quantitative whole-brain CBF measurements were computed pre- and post-ACZ to assess cerebrovascular reserve.Results3D spiral pCASL data were successfully reconstructed in all 13 cases. In 11 patients, CBF increased 2.8% to 93.2% after administration of ACZ. In the two remaining patients, CBF decreased by 2.4 to 6.0% after ACZ. The group average change in CBF due to ACZ was approximately 25.0% and individual changes were statistically significant (p < 0.01) in all patients using a paired t-test analysis. CBF perfusion data were diagnostically useful in supporting conventional MR angiography and clinical findings.Conclusion3D cylindrically-distributed spiral pCASL MRI provides a robust approach to assess cerebral blood flow and reserve in pediatric patients.  相似文献   

15.
ObjectivesWe investigated changes in the optic tract and optic radiation in patients with multiple sclerosis (MS) by comparing unilateral and bilateral optic nerve damage assessed based on visual evoked potentials (VEPs) using advanced diffusion MR metrics.MethodsIn 21 MS patients, diffusion MRI was performed. Maps of fractional anisotropy, apparent diffusion coefficient (ADC), and mean kurtosis (MK) were computed. On the basis of the P100 latency in VEPs, the MS patients were divided into three groups: bilateral (n = 7), unilateral (n = 7), and no abnormality (n = 7). Their optic tracts and optic radiations were analyzed with diffusion MRI-based fiber tracking. We also investigated the correlations between diffusion parameters and VEPs (n = 21).ResultsIn the optic tract, the diffusion changes in each of the three groups showed step-like changes. The diffusion changes in the optic radiations of the unilateral group were similar to those in the normal VEP group. Only the bilateral group showed significantly higher ADC and lower MK relative to the other two groups (P < 0.05, Steel–Dwass multiple-comparison test). A significant positive correlation between VEP latency and ADC and a significant negative correlation between VEP latency and MK were observed (P < 0.01, Spearman's correction).ConclusionsWe first evaluated the relationship between VEPs and DKI and concluded that the lateral geniculate nucleus may compensate for unilateral damage in the pre-geniculate optic pathway via neural plasticity.  相似文献   

16.
BackgroundPrevious studies have demonstrated a correlation between Expanded Disability Status Scale (EDSS) and Diffusion Tensor Imaging (DTI) metrics, but the conclusions were based on evaluations of the entire cervical spinal cord.ObjectivesThe purpose of this study was to quantify the FA and MD values in the spinal cord of NMO patients, separating the lesion sites from the preserved sites, which has not been previously preformed. In addition, we attempted to identify a correlation with EDSS.MethodsDTI was performed in 11 NMO patients and 11 healthy individuals using a 1.5-T MRI scanner. We measured the FA and MD at ROIs positioned along the cervical spinal cord. The mean values of FA and MD at lesion, preserved and spinal cord sites were compared with those of a control group. We tested the correlations between the mean FA and MD with EDSS.ResultsFA in NMO patients was significantly reduced in lesion sites (0.44 vs. 0.55, p = 0.0046), preserved sites (0.46 vs. 0.55, p = 0.0015), and all sites (0.45 vs 0.55, p = 0.0013) while MD increased only in lesion sites (1.03 × 10 3 mm2/s vs. 0.90 × 10 3 mm2/s, p = 0.009). The FA demonstrated the best correlation with EDSS (r =  0.7603, p = 0.0086), particularly at lesion sites.ConclusionsThe results reinforce the importance of the FA index and confirm the hypothesis that NMO is a diffuse disease.  相似文献   

17.
PurposeTo investigate if intravoxel incoherent motion (IVIM) modeled diffusion-weighted imaging (DWI) can be linked to contrast-enhanced (CE-)MRI in liver parenchyma and liver lesions.MethodsTwenty-five patients underwent IVIM-DWI followed by multiphase CE-MRI using Gd-EOB-DTPA (n = 20) or Gd-DOTA (n = 5) concluded with IVIM-DWI. Diffusion (Dslow), microperfusion (Dfast), its fraction (ffast), wash-in-rate (Rearly) and late-enhancement-rate (Rlate) of Gd-EOB-DTPA were calculated voxel-wise for the liver. Parenchyma and lesions were segmented. Pre-contrast IVIM was compared 1) between low, medium and high Rearly for parenchyma 2) to post-contrast IVIM substantiated with simulations 3) between low and high Rlate per lesion type.ResultsDfast and ffast increased (P < 0.001) with 25.6% and 33.8% between low and high Rearly of Gd-EOB-DTPA. Dslow decreased (− 15.0%; P < 0.001) with increasing Rearly. Gd-DOTA demonstrated similar observations. ffast (+ 10%; P < 0.001) and Dfast (+ 6.6%; P < 0.001) increased after Gd-EOB-DTPA, while decreasing after Gd-DOTA (− 4.2% and − 5.7%, P < 0.001) and were confirmed by simulations. For focal nodular hyperplasia lesions (n = 5) Dfast and ffast increased (P < 0.001) with increasing Rlate, whereas for hepatocellular carcinoma (n = 4) and adenoma (n = 7) no differences were found.ConclusionMicroperfusion measured by IVIM reflects perfusion in a way resembling CE-MRI. Also IVIM separated intra- and extracellular MR contrast media. This underlines the potential of IVIM in quantitative liver imaging.  相似文献   

18.
ObjectivesTo test the hypothesis that two-dimensional (2D) displacement encoding via stimulated echoes (DENSE) is a reproducible technique for the depiction of segmental myocardial motion in human subjects.Materials and methodsFollowing the approval of the institutional review board (IRB), 17 healthy volunteers without documented history of cardiovascular disease were recruited. For each participant, 2D DENSE were performed twice (at different days) and the images were obtained at basal, midventricular and apical levels of the left ventricle (LV) with a short-axis view. The radial thickening strain (Err), circumferential strain (Ecc), twist and torsion were calculated. The intra-, inter-observer and inter-study variations of DENSE-derived myocardial motion indices were evaluated using coefficient of variation (CoV) and intra-class correlation coefficient (ICC).ResultsIn total, there are 272 pairs of myocardial segments (data points) for comparison. There is good intra- and inter-observer reproducibility for all DENSE-derived measures in 17 participants. There is good inter-study reproducibility for peak Ecc (CoV = 19.64%, ICC = 0.8896, p < 0.001), twist (CoV = 33.11%, ICC = 0.9135, p < 0.001) and torsion (CoV = 13.96%, ICC = 0.8684, p < 0.001). There is moderate inter-study reproducibility for Err (CoV = 38.89%, ICC = 0.7022, p < 0.001).ConclusionDENSE is a reproducible technique for characterizing LV regional systolic myocardial motion on a per-segment basis in healthy volunteers.  相似文献   

19.
PurposeTo compare the pharmacokinetic parameters derived from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in gastric cancers of different histological type and Lauren classification, and to investigate whether DCE-MRI parameters correlate with vascular endothelial growth factor (VEGF) expression levels in gastric cancer.MethodsIncluded were 32 patients with gastric cancer who underwent DCE-MRI of the upper abdomen before tumor resection. DCE-MRI parameters including the volume transfer coefficient (Ktrans), reverse reflux rate constant (Kep), and extracellular extravascular volume fraction (Ve) were calculated from the tumor region. Post-operative specimens were used for determination of histological differentiation (i.e., non-mucinous, mucinous, or signet-ring-cell adenocarcinoma) as well as Lauren classification (intestinal type or diffuse type). VEGF expression was examined for assessing angiogenesis. DCE-MRI parameters with different histological type and Lauren classification were compared using independent samples t-test and analysis of variance, respectively. Correlations between DCE-MRI parameters and VEGF expression grades were tested using Spearman correlation analysis.ResultsAmong gastric adenocarcinomas of three different histological types, mucinous adenocarcinomas showed a higher Ve and lower Ktrans than the others (P < 0.01). Between the two Lauren classifications, the diffuse type showed a higher Ve than the intestinal type (P < 0.001). The mean Ktrans showed a significantly positive correlation with VEGF (r = 0.762, P < 0.001).ConclusionDCE-MRI permits noninvasive prediction of tumor histological type and Lauren classification and estimation of tumor angiogenesis in gastric cancer. DCE-MRI parameters can be used as imaging biomarkers to predict the biologic aggressiveness of a tumor as well as patient prognosis.  相似文献   

20.
PurposeSafe, sensitive, and non-invasive imaging methods to assess the presence, extent, and turnover of myocardial fibrosis are needed for early stratification of risk in patients who might develop heart failure after myocardial infarction. We describe a non-contrast cardiac magnetic resonance (CMR) approach for sensitive detection of myocardial fibrosis using a canine model of myocardial infarction and reperfusion.MethodsSeven dogs had coronary thrombotic occlusion of the left anterior descending coronary arteries followed by fibrinolytic reperfusion. CMR studies were performed at 7 days after reperfusion. A CMR spin-locking T1ρ mapping sequence was used to acquire T1ρ dispersion data with spin-lock frequencies of 0 and 511 Hz. A fibrosis index map was derived on a pixel-by-pixel basis. CMR native T1 mapping, first-pass myocardial perfusion imaging, and post-contrast late gadolinium enhancement imaging were also performed for assessing myocardial ischemia and fibrosis. Hearts were dissected after CMR for histopathological staining and two myocardial tissue segments from the septal regions of adjacent left ventricular slices were qualitatively assessed to grade the extent of myocardial fibrosis.ResultsHistopathology of 14 myocardial tissue segments from septal regions was graded as grade 1 (fibrosis area, < 20% of a low power field, n = 9), grade 2 (fibrosis area, 20–50% of field, n = 4), or grade 3 (fibrosis area, > 50% of field, n = 1). A dramatic difference in fibrosis index (183%, P < 0.001) was observed by CMR from grade 1 to 2, whereas differences were much smaller for T1ρ (9%, P = 0.14), native T1 (5.5%, P = 0.12), and perfusion (− 21%, P = 0.05).ConclusionA non-contrast CMR index based on T1ρ dispersion contrast was shown in preliminary studies to detect and correlate with the extent of myocardial fibrosis identified histopathologically. A non-contrast approach may have important implications for managing cardiac patients with heart failure, particularly in the presence of impaired renal function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号