首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
以戊二酸锌为催化剂,在无溶剂条件下催化环氧丙烷与马来酸酐的开环共聚反应;优化了聚合条件,利用红外光谱和核磁共振谱研究了共聚物的结构,利用凝胶渗透色谱测定了其分子量.结果表明,戊二酸锌可以有效地催化马来酸酐与环氧丙烷的开环共聚,从而以较高转化率得到交替度较高的共聚物.  相似文献   

2.
含有膦基苯磺酸(PO)配体的烷基金属配合物表现出罕见的烯烃聚合催化性质,其不但可以催化乙烯均聚形成线性聚乙烯,而且可以催化乙烯与众多的极性单体如CH2=CHX、CO等共聚产生功能化线性聚烯烃.总结了PO配体的结构特点和(PO)Pd(Ⅱ)配合物引发的新型聚合反应,综述了(PO)Ni(Ⅱ)催化剂在催化乙烯和极性单体共聚方面的应用,以及含有膦基二磺酸配体OPO的Pd(Ⅱ)、Ru(Ⅳ)催化剂的特殊催化性质.另外,从配体的对称性、柔性和轴向官能团位阻以及纯电子效应等方面对PO金属催化剂的构效关系和共聚催化反应机理进行了探讨.  相似文献   

3.
本文综述了双金属氰化络合物及其催化的环氧化物参与的聚合反应研究。双金属氰化络合物是由其内界金属M通过氰基与外界金属M连接形成的含 M-C≡N-M 桥键的三维网络状无机高分子(M一般为Zn2+、Fe2+、Co2+和Ni2+等二价金属离子,M一般为Fe2+、Fe3+、Co2+、Co3+和Ni2+等过渡金属离子)。外界金属M一般被认为是催化反应的活性中心金属。该类催化剂早期被用于催化环氧化物开环聚合,并逐步发展成为合成中高分子量、低不饱和度聚醚多元醇的极高效催化剂。近年来该类催化剂被用来催化环氧化物/环状酸酐共聚、环氧化物/CX2(X≡O,S)共聚和环氧化物/环状酸酐/CO2三元共聚反应合成聚酯、聚碳酸酯、聚(醚-碳酸酯)、聚硫代碳酸酯和聚(碳酸酯-酯)等具有生物降解性的聚合物。尤其对氧化环己烯(CHO)与CO2(或酸酐)共聚,锌-钴双金属氰化络合物表现出了极高的催化活性和选择性。结合本研究组十多年的研究结果,本文讨论了双金属氰化络合物催化活性中心的可能结构和催化机理,提出了双金属氰化络合物催化聚合的共性难题和解决这些问题的方向。  相似文献   

4.
韩微莉  王文珍  蔺伟 《分子催化》2017,31(6):575-593
二氧化碳是主要的温室气体,也是最丰富的C1资源.利用二氧化碳与环氧化物共聚生成可生物降解的聚碳酸酯是目前研究的热点之一.就目前的研究情况而言,二氧化碳与环氧化物共聚反应存在的主要问题是催化效率低、催化剂成本高、反应条件苛刻、共聚物产率较低以及催化剂分离复杂等.我们分类综述了二氧化碳与环氧化物共聚的新型催化体系,并探讨了各类催化体系的优缺点,对二氧化碳的资源化利用具有重要的应用价值.  相似文献   

5.
有机小分子催化聚合反应是合成化学领域新的研究方向。有机催化环醚(主要为环氧化物)与环状酸酐共聚制备聚酯的合成路线,由于单体具有来源广泛、有机催化剂低毒、对水和空气不敏感等特点,因而应用前景广阔。本文按有机小分子催化剂、环醚与环状酸酐的种类综述了近年来出现的有机催化共聚合成聚酯的反应,并详细讨论了该共聚反应及其机理,尤其是高催化活性和聚合可控性的Lewis酸碱对催化共聚的机理;提出了利用Lewis酸为增长链阴离子提供结构因素(如基团和电子结构效应)来调控聚合的方法。今后,催化环氧化物与环状酸酐共聚研究的中心任务仍然是发展新的高活性有机催化剂,并实现"活性"的全交替共聚反应,进一步提高共聚物的分子量,并实现共聚反应的化学选择性、区域和立体选择性的精确控制。  相似文献   

6.
从1969年Inoue发现ZnEt2-H2O催化CO2和环氧丙烷共聚以来,CO2共聚催化剂经过了30多年的发展,取得了显著的进步.比较重要的催化体系有Et2Zn-助剂;羧酸锌;双金属;卟啉铝;稀土;高位阻二亚胺和SalenMX等.SalenMX是2000年以来发展起来的新型催化体系,与卟啉铝和二亚胺体系一样,它也具有由金属和N/O等原子的螯合结构和较高的位阻.但与卟啉铝相比,它制备更加容易,共聚反应时间也大大缩短;与二亚胺相比,它在空气中稳定,对水分也不敏感.同时也保留了二亚胺体系催化效率高,产物分子量分布窄的特点.如果能在此基础上加以改进,将会发展成为一种较有前途的二氧化碳共聚工业催化剂.  相似文献   

7.
马来酸酐与环氧丙烷开环共聚,所得聚酯具有功能团(C=C),可以通过接技、交联待方法改变其性能,马来酸杆与环氧化物开环共聚合成聚酯,所用催化剂通用有有机金属化合物和稀土 事物等,我们在铁系催化丁二聚合和马来酸酐与苯乙烯共聚的基础上,首次将Fe(acac)3-Al(i-Bu)3-α,α′-联吡啶催化剂用于马来酸酐与环氧化物开环共聚,发现该催化剂催化共聚反应具有时间短、收率高、共聚物交替度高等优点,并测定了共聚合反应动力学的参数。  相似文献   

8.
Zn-Co双金属氰化络合物催化氧化环己烯/二氧化碳共聚反应   总被引:3,自引:0,他引:3  
陈上  张兴宏  戚国荣 《催化学报》2006,27(4):355-360
 制备了基于Zn3[Co(CN)6]2的双金属氰化络合物催化剂,考察了其催化氧化环己烯/CO2共聚反应的特点,以及制备过程中有机配体和卤化锌种类对催化剂催化性能和共聚产物组成的影响. 结果表明,该催化剂能高效催化共聚反应,在催化剂含量为1.8×10-4时其催化效率可达6?000 g/g以上, FT-IR和 1H NMR表征证实聚合产物为接近交替的共聚物. 催化剂催化效率受有机配体和卤化锌种类影响,但共聚物组成只受卤化锌种类影响,而不受有机配体种类影响,其中叔丁醇和ZnCl2分别是较好的有机配体和锌盐. 动力学研究表明,该共聚反应对催化剂浓度是一级反应,反应的平均活化能为41.6 kJ/mol.  相似文献   

9.
脂肪族含硫高分子是一类重要的功能聚合物材料.催化含硫一碳化合物(氧硫化碳(COS)、二硫化碳(CS2))与环氧化物共聚制备含硫高分子是近年迅速发展起来的合成路线.最近,张兴宏等使用由有机Lewis碱和硫脲构成的无金属催化体系,实现了COS与环氧化合物室温"活性"阴离子共聚,得到了100%交替、头尾结构含量99%、数均分子量近1×105和窄分布(1.13~1.23)的聚单硫代碳酸酯,催化剂活性达112 h-1,揭示了硫脲和Lewis碱分别选择性活化环氧和COS并协同催化共聚的反应机制.  相似文献   

10.
溴化锌-卤化正四丁基铵高效催化合成苯乙烯环状碳酸酯   总被引:1,自引:0,他引:1  
溴化锌-卤化正四丁基铵二元催化剂高效催化合成苯乙烯环状碳酸酯, 当n-Bu4NI/ZnBr2摩尔比为2时, 在短时间内(30 min)可将苯乙烯环氧化物几乎完全转化为环状碳酸酯, 无其它副产物的生成. 在ZnBr2/n-Bu4NX的催化体系中加入Au/SiO2 氧化催化剂时, 能将苯乙烯直接氧化, 然后碳酰化实现“一锅法”制备环状碳酸酯. 在此合成路线中担载的纳米金催化第一步苯乙烯环氧化反应; ZnBr2/n-Bu4NBr催化第二步CO2环加成反应. 在温和的反应条件下(80 ℃, 1 MPa, 4 h)将环状碳酸酯的产率提高到42%.  相似文献   

11.
The intramolecular dinuclear zinc complexes generated in situ from the reaction of multidentate semi-azacrown ether ligands with Et(2)Zn, followed by treatment with an alcohol additive, were found to promote the copolymerization of CO(2) and cyclohexene oxide (CHO) with completely alternating polycarbonate selectivity and high efficiency. With this type of novel initiator, the copolymerization could be accomplished under mild conditions at 1 atm pressure of CO(2), which represents a significant advantage over most catalytic systems developed for this reaction so far. The copolymerization reaction was demonstrated to be a living process as a result of the narrow polydispersities and the linear increase in the molecular weight with conversion of CHO. In addition, the solid-state structure of the dinuclear zinc complex was characterized by X-ray crystal structural analysis and can be considered as a model of the active catalyst. On the basis of the various efforts made to understand the mechanisms of the catalytic reaction, including MALDI-TOF mass analysis of the copolymers' end-groups, the effect of alcohol additives on the catalysis and CO(2) pressure on the conversion of CHO, as well as the kinetic data gained from in situ IR spectroscopy, a plausible catalytic cycle for the present reaction system is outlined. The copolymerization is initiated by the insertion of CO(2) into the Zn--OEt bond to afford a carbonate-ester-bridged complex. The dinuclear zinc structure of the catalyst remains intact throughout the copolymerization. The bridged zinc centers may have a synergistic effect on the copolymerization reaction; one zinc center could activate the epoxide through its coordination and the second zinc atom may be responsible for carbonate propagation by nucleophilic attack by the carbonate ester on the back side of the cis-epoxide ring to afford the carbonate. The mechanistic implication of this is particularly important for future research into the design of efficient and practical catalysts for the copolymerization of epoxides with CO(2.).  相似文献   

12.
The alternating copolymerization of (R)- or (S)-limonene oxide and CO2 using beta-diiminate zinc acetate catalysts is reported. At 100 psi CO2 and 25 degrees C, the catalyst exhibits a high selectivity for the trans isomer and produces regioregular polycarbonate. The copolymer contains >99% carbonate linkages, a narrow molecular weight distribution, and an Mn value consistent with the [epoxide]/[Zn] ratio.  相似文献   

13.
Li  Yang  Zhang  Ying-Ying  Liu  Bin  Zhang  Xing-Hong 《高分子科学》2018,36(2):139-148
The general characteristics of the active center of the catalysts(including zinc-cobalt(III) double metal cyanide complex [Zn-Co(Ⅲ) DMCC]) for the copolymerization reaction of carbon dioxide(CO_2) with epoxide are summarized. By comparing the active center, catalytic performance of the Zn-Co(Ⅲ) DMCC(and other catalysts) with HCAII enzyme in the organism for activating CO_2(COS and CS_2), we proposed that the metal-hydroxide bond(M-OH), which is the real catalytic center of human carbonic anhydride Ⅱ(HCAⅡ), is also the catalytic(initiating) center for the copolymerization. It accelerates the copolymerization and forms a closed catalytic cycle through the chain transfer reaction to water(and thus strictly meets the definition of the catalyst). In addition, the metal-hydroxide bond catalysis could well explain the oxygen/sulfur exchange reaction(O/S ER) in metal(Zn, Cr)-catalyzed copolymerization of COS(and CS_2) with epoxides. Therefore, it is very promising to learn from HCAⅡ enzyme to develop biomimetic catalyst for highly active CO_2/epoxide copolymerization in a well-controlled manner under mild conditions.  相似文献   

14.
Despite recent advances regarding catalysts for CO2/epoxide copolymerization, the development of high-activity catalysts for alternating polymerization of CO2 and commodity epoxides, such as propylene oxide, remains a challenge. A new class of unsymmetrically substituted beta-diiminate zinc complexes is reported that exhibits unprecedented activity for CO2/propylene oxide copolymerization. The polymers formed are of high molecular weight (Mn approximately 35 kg/mol) and have narrow polydispersities (PDI approximately 1.1), consistent with a living polymerization.  相似文献   

15.
Carbon dioxide and epoxide copolymerize in the presence of some organometallic catalyst systems under moderate conditions to give aliphatic polycarbonates of high molecular weight. Some metalloporphyrins of aluminum and zinc were found to act as novel catalysts for the polymerization of epoxide and for the copolymerization of carbon dioxide and epoxide, though not alternating. The polymers are characterized by the narrow molecular weight distribution and the unusual stereoregularity. Starting from the copolymerization of carbon dioxide and trimethylsilyl glycidyl ether with diethylzinc-water catalyst system, a readily degradable polycarbonate having hydroxyl group was obtained.  相似文献   

16.
Asymmetric, regio- and stereoselective alternating copolymerization of CO(2) and racemic aliphatic epoxides proceeds effectively under mild temperature and pressure by using a binary catalyst system of a chiral tetradentate Schiff base cobalt complex [SalenCo(III)X] as the electrophile in conjunction with an ionic organic ammonium salt or a sterically hindered strong organic base as the nucleophile. The substituent groups on the aromatic rings, chiral diamine backbone, and axial X group of the electrophile, as well as the nucleophilicity, leaving ability, and coordination ability of the nucleophile, all significantly affect the catalyst activity, polymer selectivity, enantioselectivity, and stereochemistry. A bulky chiral cyclohexenediimine backbone complex [SalcyCo(III)X] with an axial X group of poor leaving ability as the electrophile, combined with a bulky nuclephile with poor leaving ability and low coordination ability, is an ideal binary catalyst system for the copolymerization of CO(2) and a racemic aliphatic epoxide to selectively produce polycarbonates with relatively high enantioselectivity, >95% head-to-tail connectivity, and >99% carbonate linkages. A fast copolymerization of CO(2) and epoxides was observed when the concentration of the electrophile or/and the nucleophile was increased, and the number of polycarbonate chains was proportional to the concentration of the nucleophile. Electrospray ionization mass spectrometry, in combination with a kinetic study, showed that the copolymerization involved the coordination activation of the monomer by the electrophile and polymer chain growth predominately occurring in the nucleophile. Both the enantiomorphic site effect resulting from the chiral electrophile and the polymer chain end effect mainly from the bulky nucleophile cooperatively control the stereochemistry of the CO(2)/epoxide copolymerization.  相似文献   

17.
A series of zinc beta-diiminate (BDI) complexes and their solid-state structures, solution dynamics, and copolymerization behavior with CO(2) and cyclohexene oxide (CHO) are reported. Stoichiometric reactions of the copolymerization initiation steps show that zinc alkoxide and bis(trimethylsilyl)amido complexes insert CO(2), whereas zinc acetates react with CHO. [(BDI-2)ZnOMe](2) [(BDI-2) = 2-((2,6-diethylphenyl)amido)-4-((2,6-diethylphenyl)imino)-2-pentene] and (BDI-1)ZnO(i)Pr [(BDI-1) = 2-((2,6-diisopropylphenyl)amido)-4-((2,6-diisopropylphenyl)imino)-2-pentene] react with CO(2) to form [(BDI-2)Zn(mu-OMe)(mu,eta(2)-O(2)COMe)Zn(BDI-2)] and [(BDI-1)Zn(mu,eta(2)-O(2)CO(i)Pr)](2), respectively. (BDI-2)ZnN(SiMe(3))(2) inserts CO(2) and eliminates trimethylsilyl isocyanate to give [(BDI-2)Zn(mu-OSiMe(3))](2). [(BDI-7)Zn(mu-OAc)](2) [(BDI-7) = 3-cyano-2-((2,6-diethylphenyl)amido)-4-((2,6-diethylphenyl)imino)-2-pentene] reacts with 1.0 equiv of CHO to yield [(BDI-7)Zn(mu,eta(2)-OAc)(mu,eta(1)-OCyOAc)Zn(BDI-7)]. Under typical polymerization conditions, rate studies on the copolymerization exhibit no dependence in [CO(2)], a first-order dependence in [CHO], and orders in [Zn](tot) ranging from 1.0 to 1.8 for [(BDI)ZnOAc] complexes. The copolymerizations of CHO (1.98 M in toluene) and 300 psi CO(2) at 50 degrees C using [(BDI-1)ZnOAc] and [(BDI-2)ZnOAc] show orders in [Zn](tot) of 1.73 +/- 0.06 and 1.02 +/- 0.03, respectively. We propose that two zinc complexes are involved in the transition state of the epoxide ring-opening event.  相似文献   

18.
Zinc complexes derived from benzoic acids containing electron-withdrawing substituents have been synthesized from Zn(II)(bis-trimethylsilyl amide)(2) and the corresponding carboxylic acid (2,6-X(2)C(6)H(3)COOH, where X = F, Cl, or OMe) in THF and structurally characterized via X-ray crystallography. The 2,6-difluorobenzoate complex crystallizes from THF or CH(3)CN as a seven membered zinc aggregate, where the metal atoms are interconnected by a combination of 10 mu-benzoates and mu(4)-oxo ligands, that is, [(2,6-difluorobenzoate)(10)O(2)Zn(7)](solvent)(2), solvent = THF (1) and CH(3)CN (1a). On the other hand, the 2,6-dichlorobenzoate zinc derivative crystallizes from THF as a dimer, [(2,6-dichlorobenzoate)(4)Zn(2)](THF)(3) (2), where the two zinc centers are bridged by three benzoate ligand. One of the zinc centers possesses a tetrahedral ligand environment where the fourth ligand is a unidentate benzoate, and the other zinc center has an octahedral arrangement of ligands which is accomplished by the additional binding of three THF molecules. Upon dissolution of complex 1 or 2 in the strongly binding pyridine solvent, disruption of these zinc carboxylates occurs with concomitant formation of mononuclear zinc bis-benzoates with three pyridine ligands in the metal coordination sphere. Complexes 1 and 2 were found to be effective catalysts for the copolymerization of cyclohexene oxide and carbon dioxide to afford polycarbonates devoid of polyether linkages, that is, completely alternating copolymers. Although these catalysts or catalyst precursors in the presence of CO(2)/propylene oxide afforded mostly propylene carbonate, they did serve as efficient catalysts for the terpolymerization of carbon dioxide/cyclohexene oxide/propylene oxide. The reactivities of these zinc carboxylates were very similar to those previously reported analogous complexes which have not been structurally characterized. Hence, it is suggested here that all of these zinc carboxylates provide similar catalytic sites for CO(2)/epoxide coupling processes.  相似文献   

19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号