首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PurposeTo evaluate the feasibility of 3D fast spin-echo (FSE) imaging with compressed sensing (CS) for the assessment of shoulder.Materials and methodsTwenty-nine patients who underwent shoulder MRI including image sets of axial 3D-FSE sequence without CS and with CS, using an acceleration factor of 1.5, were included. Quantitative assessment was performed by calculating the root mean square error (RMSE) and structural similarity index (SSIM). Two musculoskeletal radiologists compared image quality of 3D-FSE sequences without CS and with CS, and scored the qualitative agreement between sequences, using a five-point scale. Diagnostic agreement for pathologic shoulder lesions between the two sequences was evaluated.ResultsThe acquisition time of 3D-FSE MRI was reduced using CS (3 min 23 s vs. 2 min 22 s). Quantitative evaluations showed a significant correlation between the two sequences (r = 0.872–0.993, p < 0.05) and SSIM was in an acceptable range (0.940–0.993; mean ± standard deviation, 0.968 ± 0.018). Qualitative image quality showed good to excellent agreement between 3D-FSE images without CS and with CS. Diagnostic agreement for pathologic shoulder lesions between the two sequences was very good (κ = 0.915–1).ConclusionsThe 3D-FSE sequence with CS is feasible in evaluating the shoulder joint with reduced scan time compared to 3D-FSE without CS.  相似文献   

2.
PurposeWe present three-dimensional adiabatic inversion recovery prepared ultrashort echo time Cones (3D IR-UTE-Cones) imaging of cortical bone in the hip of healthy volunteers using a clinical 3T scanner.MethodsA 3D IR-UTE-Cones sequence, based on a short pulse excitation followed by a 3D Cones trajectory, with a nominal TE of 32 μs, was employed for high contrast morphological imaging of cortical bone in the hip of heathy volunteers. Signals from soft tissues such as muscle and marrow fat were suppressed via adiabatic inversion and signal nulling. T2 value of the cortical bone was also calculated based on 3D IR-UTE-Cones acquisitions with a series of TEs ranging from 0.032 to 0.8 ms. A total of four healthy volunteers were recruited for this study. Average T2 values and the standard deviation for four regions of interests (ROIs) at the greater trochanter, the femoral neck, the femoral head and the lesser trochanter were calculated.ResultsThe 3D IR-UTE-Cones sequence provided efficient suppression of soft tissues with excellent image contrast for cortical bone visualization in all volunteer hips. Exponential single component decay was observed for all ROIs, with averaged T2 values ranging from 0.33 to 0.45 ms, largely consistent with previously reported T2 values of cortical bone in the tibial midshaft.ConclusionsThe 3D IR-UTE-Cones sequence allows in vivo volumetric imaging and quantitative T2 measurement of cortical bone in the hip using a clinical 3T scanner.  相似文献   

3.
ObjectiveIn this study, we sought to demonstrate the blood suppression performance, image quality and morphological measurements for compressed sensing (CS) based simultaneous 3D black- and gray-blood imaging sequence (CS-siBLAG) in carotid vessel wall MR imaging.Materials and methodsSeven healthy volunteers and five patients were recruited. Healthy subjects underwent five CS-siBLAG scans with 1, 2, 3, 4 and 5-fold accelerations. Signal-to-tissue ratio (STR) and contrast-to-tissue ratio (CTR) were computed as the measures of flowing signal suppression performance and the image quality for black-blood imaging of the technique. Vessel lumen area (LA) and wall area (WA) were compared between fully sampled acquisition and each accelerated acquisition. Patients underwent three CS-siBLAG scans with 1, 3 and 5-fold accelerations as well as a 3D time of flight (3D TOF) scan. Two radiologists reviewed the under-sampled black- and gray-blood image quality.ResultsSTR and CTR values obtained with 2 to 5-fold accelerations were not significantly different from those with full acquisition. LA and WA measured at 2 ×, 3 ×, 4 × and 5 × were all highly correlated to the corresponding values at 1 ×. For patients imaging, two radiologists both found that the dual-contrast images at 3 × acceleration exhibited comparable image quality to that of the fully sampled acquisition, and that the images at 5 × exhibited slightly blurred vessel wall and outer vessel wall boundaries.ConclusionBy combining the CS under-sampling pattern and reconstruction, pseudo-centric phase encoding order and dual blood contrast sequences, this technique provides spatially registered black- and gray-blood images and excellent visualization for vessel wall imaging and gray-blood imaging in a short scan time.  相似文献   

4.
PurposeTo investigate the in-vivo precision and clinical feasibility of 3D-QALAS - a novel method for simultaneous three-dimensional myocardial T1- and T2-mapping.MethodsTen healthy subjects and 23 patients with different cardiac pathologies underwent cardiovascular 3 T MRI examinations including 3D-QALAS, MOLLI and T2-GraSE acquisitions. Precision was investigated in the healthy subjects between independent scans, between dependent scans and as standard deviation of consecutive scans. Clinical feasibility of 3D-QALAS was investigated for native and contrast enhanced myocardium in patients. Data were analyzed using mean value and 95% confidence interval, Pearson correlation, Paired t-tests, intraclass correlation and Bland-Altman analysis.ResultsAverage myocardial relaxation time values and SD from eight repeated acquisitions within the group of healthy subjects were 1178 ± 18.5 ms (1.6%) for T1 with 3D-QALAS, 52.7 ± 1.2 ms (2.3%) for T2 with 3D-QALAS, 1145 ± 10.0 ms (0.9%) for T1 with MOLLI and 49.2 ± 0.8 ms (1.6%) for T2 with GraSE.Myocardial T1 and T2 relaxation times obtained with 3D-QALAS correlated very well with reference methods; MOLLI for T1 (r = 0.994) and T2-GraSE for T2 (r = 0.818) in the 23 patients. Average native/post-contrast myocardial T1 values from the patients were 1166.2 ms/411.8 ms for 3D-QALAS and 1174.4 ms/438.9 ms for MOLLI. Average native myocardial T2 values from the patients were 53.2 ms for 3D-QALAS and 54.4 ms for T2-GraSE.ConclusionsRepeated independent and dependent scans together with the intra-scan repeatability, demonstrated all a very good precision for the 3D-QALAS method in healthy volunteers. This study shows that 3D T1 and T2 mapping in the left ventricle is feasible in one breath hold for patients with different cardiac pathologies using 3D-QALAS.  相似文献   

5.
The goal of this project was to develop and apply techniques for T2 mapping and 3D high resolution (1.5 mm isotropic; 0.003 cm3) 13C imaging of hyperpolarized (HP) probes [1-13C]lactate, [1-13C]pyruvate, [2-13C]pyruvate, and [13C,15N2]urea in vivo. A specialized 2D bSSFP sequence was implemented on a clinical 3T scanner and used to obtain the first high resolution T2 maps of these different hyperpolarized compounds in both rats and tumor-bearing mice. These maps were first used to optimize timings for highest SNR for single time-point 3D bSSFP acquisitions with a 1.5 mm isotropic spatial resolution of normal rats. This 3D acquisition approach was extended to serial dynamic imaging with 2-fold compressed sensing acceleration without changing spatial resolution. The T2 mapping experiments yielded measurements of T2 values of > 1 s for all compounds within rat kidneys/vasculature and TRAMP tumors, except for [2-13C]pyruvate which was ~ 730 ms and ~ 320 ms, respectively. The high resolution 3D imaging enabled visualization the biodistribution of [1-13C]lactate, [1-13C]pyruvate, and [2-13C]pyruvate within different kidney compartments as well as in the vasculature. While the mouse anatomy is smaller, the resolution was also sufficient to image the distribution of all compounds within kidney, vasculature, and tumor. The development of the specialized 3D sequence with compressed sensing provided improved structural and functional assessments at a high (0.003 cm3) spatial and 2 s temporal resolution in vivo utilizing HP 13C substrates by exploiting their long T2 values. This 1.5 mm isotropic resolution is comparable to 1H imaging and application of this approach could be extended to future studies of uptake, metabolism, and perfusion in cancer and other disease models and may ultimately be of value for clinical imaging.  相似文献   

6.
PurposeQuantification of myocardial oxygenation (MO) in heart failure (HF) has been less than satisfactory. This has necessitated the use of invasive techniques to measure MO directly or to determine the oxygen demand during exercise using the cardiopulmonary exercise (CPX) test. We propose a new quantification method for MO using blood-oxygen-level-dependent (BOLD) myocardial T2* magnetic resonance imaging (M-T2* MRI), and investigate its correlation with CPX results.MethodsThirty patients with refractory HF who underwent cardiac MRI and CPX test for heart transplantation, and 24 healthy, age-matched volunteers as controls were enrolled. M-T2* imaging was performed using a 3-Tesla and multi-echo gradient-echo sequence. M-T2* was calculated by fitting the signal intensity data for the mid-left ventricular septum to a decay curve. M-T2* was measured under room-air (T2*-air) and after inhalation of oxygen for 10 min at a flow rate of 10 L/min (T2*-oxy). MO was defined as the difference between the two values (ΔT2*). Changes in M-T2* at the two conditions and ΔT2* between the two groups were compared. Correlation between ΔT2* and CPX results was analyzed using the Pearson coefficient.ResultsT2*-oxy was significantly greater than T2*-air in patients with HF (29.9 ± 7.3 ms vs. 26.7 ± 6.0 ms, p < 0.001), whereas no such difference was observed in controls (25.5 ± 4.0 ms vs. 25.4 ± 4.4 ms). ΔT2* was significantly greater for patients with HF than for controls (3.2 ± 4.5 ms vs. -0.1 ± 1.3 ms, p < 0.001). A significant correlation between ΔT2* and CPX results (peak VO2, r =  0.46, p < 0.05; O2 pulse, r =  0.54, p < 0.005) was observed.ConclusionΔT2* is increased T2*-oxy is greater in patients with HF, and is correlated with oxygen metabolism during exercise as measured by the CPX test. Hence, ΔT2* can be used as a surrogate marker of MO instead of CPX test.  相似文献   

7.
PurposeTo determine the clinical value of routine use of thin-section 3D MRI using 3D FSE sequences with a variable flip angle technique for internal derangements of the knee joint at 3 T.Method and MaterialsThirty-four knees in 34 patients suspected of having internal derangements of the knee joint were included. Following standard 2D MRI protocol including sagittal PDWI, T1WI and T2*WI, coronal fat-suppressed PDWI, and axial fat-suppressed PDWI with 3-4 mm thicknesses, fat-suppressed and water-excitation PDWI using 3D FSE sequences with a variable flip angle technique with 0.6 mm thickness were obtained in coronal plane and the three major planes with 1 mm thickness (3D MRI) was reformatted. The standard 2D MRI protocol and reformatted 3D MRI protocol (three sagittal 2D sequence images plus 3D MRI) were independently analyzed by two radiologists concerning presence or absence of lesions in the menisci, cartilage, and ligament. Interobserver agreements in both the MRI protocols were assessed by weighted-kappa coefficients. Regarding diagnostic accuracy, areas under the receiver operating characteristic curves (Az values) of both the MRI protocols were compared.ResultsThirty-eight meniscal lesions, 39 cartilage lesions, and 20 ligamentous lesions were surgically detected. Excellent interobserver agreements (kappa = 0.91–0.98) were seen in both the MRI protocols, with a slightly better tendency in the reformatted 3D MRI protocol. Average Az values in detection of the meniscal, cartilage, and ligamentous lesions were significantly higher in the reformatted 3D MRI protocol than in the standard 2D MRI protocol (p < 0.01 or p < 0.001).ConclusionRoutine use of reformatted thin-section 3D MRI using 3D FSE sequences with a variable flip angle technique may improve diagnostic accuracy and confidence in detection of internal derangements of the knee joint.  相似文献   

8.
ObjectiveIn this study, we sought to investigate the feasibility of fast carotid artery MR angiography (MRA) by combining three-dimensional time-of-flight (3D TOF) with compressed sensing method (CS-3D TOF).Materials and methodsA pseudo-sequential phase encoding order was developed for CS-3D TOF to generate hyper-intense vessel and suppress background tissues in under-sampled 3D k-space. Seven healthy volunteers and one patient with carotid artery stenosis were recruited for this study. Five sequential CS-3D TOF scans were implemented at 1, 2, 3, 4 and 5-fold acceleration factors for carotid artery MRA. Blood signal-to-tissue ratio (BTR) values for fully-sampled and under-sampled acquisitions were calculated and compared in seven subjects. Blood area (BA) was measured and compared between fully sampled acquisition and each under-sampled one.ResultsThere were no significant differences between the fully-sampled dataset and each under-sampled in BTR comparisons (P > 0.05 for all comparisons). The carotid vessel BAs measured from the images of CS-3D TOF sequences with 2, 3, 4 and 5-fold acceleration scans were all highly correlated with that of the fully-sampled acquisition. The contrast between blood vessels and background tissues of the images at 2 to 5-fold acceleration is comparable to that of fully sampled images. The images at 2 × to 5 × exhibit the comparable lumen definition to the corresponding images at 1 ×.ConclusionBy combining the pseudo-sequential phase encoding order, CS reconstruction, and 3D TOF sequence, this technique provides excellent visualizations for carotid vessel and calcifications in a short scan time. It has the potential to be integrated into current multiple blood contrast imaging protocol.  相似文献   

9.
ObjectivesTo investigate normative value and age-related change of brain magnetic resonance T1ρ relaxation at 1.5 T.MethodsThis study was approved by the local ethical committee with participants' written consent obtained. There were 42 adults healthy volunteers, including 20 males (age: 41 ± 16 (mean ± standard deviation) years, range: 22–68 years,) and 22 females (age: 39 ± 15 years, range: 21–62 years). MRI was performed at 1.5 T using 3D fluid suppressed turbo spin echo sequence. Regions-of-interests (ROIs) were obtained by atlas-based tissue segmentation and T1ρ was calculated by fitting the mean value to mono-exponential model. Correlation between T1ρ relaxation of brain gray matter regions and age was investigated.ResultsA regional difference among individual gray matter areas was noted; the highest values were observed in the hippocampus (98.37 ± 5.37 ms, median: 97.88 ms) and amygdala (94.95 ± 4.34 ms, median: 94.73 ms), while the lowest values were observed in the pallidum (83.81 ± 5.49 ms, median: 83.77 ms) and putamen (83.93 ± 4.76 ms, median: 83.99 ms). Gray matter T1ρ values decreased slowly (mean slope: − 0.256) and significantly (p < 0.05) with age in gray matter for subjects younger than 40 years old, while for subjects older than 40 years old there was no apparent correlation between T1ρ relaxation and age. Global white matter measured T1ρ value of 88.65 ± 3.47 ms (median: 87.86 ms), and the correlation with age was not significant (p = 0.18).ConclusionGray matter T1ρ relaxation demonstrates a bi-phase change with age in adults of 22–68 years.  相似文献   

10.
The purpose of this study was to develop a novel magnetic resonance imaging (MRI)-based modeling technique for measuring intervertebral displacements. Here, we present the measurement bias and reliability of the developmental work using a porcine spine model. Porcine lumbar vertebral segments were fitted in a custom-built apparatus placed within an externally calibrated imaging volume of an open-MRI scanner. The apparatus allowed movement of the vertebrae through pre-assigned magnitudes of sagittal and coronal translation and rotation. The induced displacements were imaged with static (T1) and fast dynamic (2D HYCE S) pulse sequences. These images were imported into animation software, in which these images formed a background ‘scene’. Three-dimensional models of vertebrae were created using static axial scans from the specimen and then transferred into the animation environment. In the animation environment, the user manually moved the models (rotoscoping) to perform model-to-‘scene’ matching to fit the models to their image silhouettes and assigned anatomical joint axes to the motion-segments. The animation protocol quantified the experimental translation and rotation displacements between the vertebral models. Accuracy of the technique was calculated as ‘bias’ using a linear mixed effects model, average percentage error and root mean square errors. Between-session reliability was examined by computing intra-class correlation coefficients (ICC) and the coefficient of variations (CV). For translation trials, a constant bias (β0) of 0.35 (± 0.11) mm was detected for the 2D HYCE S sequence (p = 0.01). The model did not demonstrate significant additional bias with each mm increase in experimental translation (β1Displacement = 0.01 mm; p = 0.69). Using the T1 sequence for the same assessments did not significantly change the bias (p > 0.05). ICC values for the T1 and 2D HYCE S pulse sequences were 0.98 and 0.97, respectively. For rotation trials, a constant bias (β0) of 0.62 (± 0.12)° was detected for the 2D HYCE S sequence (p < 0.01). The model also demonstrated an additional bias (β1Displacement) of 0.05° with each degree increase in the experimental rotation (p < 0.01). Using T1 sequence for the same assessments did not significantly change the bias (p > 0.05). ICC values for the T1 and 2D HYCE S pulse sequences were recorded 0.97 and 0.91, respectively. This novel quasi-static approach to quantifying intervertebral relationship demonstrates a reasonable degree of accuracy and reliability using the model-to-image matching technique with both static and dynamic sequences in a porcine model. Future work is required to explore multi-planar assessment of real-time spine motion and to examine the reliability of our approach in humans.  相似文献   

11.
ObjectivesTo evaluate the diagnostic performance of a new three-dimensional T1-weighted turbo-spin-echo sequence (3D T1-w TSE) compared to 3D contrast-enhanced angiography (CE-MRA) for stenosis measurement and compared to 2D T1-w TSE for intra-plaque hemorrhage (IPH) detection.MethodsEighty three patients underwent carotid MRI, using a new elliptic-centric phase encoding T1-weighted 3D TSE sequence in addition to the clinical protocol.Two observers evaluated image quality, presence of flow artifacts, and presence of intra-plaque hemorrhage, and computed the NASCET degree of stenosis for CE-MRA and for the new sequence. Inter-observer agreement and correlation between 3D TSE and CE-MRA for NASCET stenosis was estimated using Cohen's kappa, and correlation using linear regression and Bland-Altman plots.Histology was performed on endarterectomy samples for 18 patients. Sensitivity and specificity of 2D and 3D TSE for IPH diagnosis were computed.Results3D TSE showed better image quality than 2D TSE (p < 0.05). Interobserver agreement was good (kappa  0.86). Correlation between 3D TSE and CE-MRA was excellent (R = 0.95) for NASCET stenosis. Sensitivity and specificity for IPH diagnosis was 50% and 100% for 2D TSE and 100% and 83% for the 3D TSE.ConclusionsThe new 3D T1-w TSE allows both reliable measures of carotid stenosis, with a slight overestimation compared to CE-MRA (5%), and improved IPH identification, compared to 2D TSE.  相似文献   

12.
The purpose of this study is to clarify the degree of impregnation resulting from treatment of internal waterlogged wood samples using MRI. On a 1.5 T MR scanner, T1 and T2 measurements were performed using inversion recovery and spin-echo sequences, respectively. The samples were cut waterlogged pieces of wood treated with various impregnation techniques which were divided into different concentrations of trehalose (C12H22O11) and polyethylene glycol (PEG; HO-(C2H4O)n-H) solutions. Then these samples underwent impregnation treatment every two weeks. From the results, we found that the slope of the T1-concentration curve using linear fitting showed the value of the internal area for PEG to be higher than the external area; internal, − 2.73 ms/wt% (R2 = 0.880); external, − 1.50 ms/wt% (R2 = 0.887). Furthermore, the slope of the T1-concentration curve using linear fitting showed the values for trehalose to have almost no difference when comparing the internal and the external areas; internal, − 2.79 ms/wt% (R2 = 0.759); external, − 3.02 ms/wt% (R2 = 0.795). However, the slope of the T2-concentration curve using linear fitting for PEG showed that there was only a slight change between the internal and the external areas; internal, 0.26 ms/wt% (R2 = 0.642); external, 0.18 ms/wt% (R2 = 0.920). The slope of the T2-concentration curve did not show a change in linear relationship between the internal and the external areas; internal, 0.06 ms/wt% (R2 = 0.175); external, − 0.14 ms/wt% (R2 = 0.043). In conclusion, using visualization of relaxation time T1, it is possible to obtain more detail information noninvasively concerning the state of impregnation treatment of internal waterlogged wood.  相似文献   

13.
ObjectiveTo quantitatively evaluate induced phase errors in fast spin echo (FSE) signals due to low frequency electromagnetic inference (EMI).MethodsSpecific form of Bloch equation is numerically solved in time domain for two different FSE pulse sequences (ETL = 8) with two different bandwidths. A single spin is modeled at x = 10 cm, EMI frequencies are simulated from 1 to 1000 Hz and phase errors at different echo times are calculated.ResultsPhase errors in the received echo signals induced by EMI are significantly higher at low frequencies (< 200 Hz) than at high frequencies and the phase errors at low frequencies can be effectively reduced by using high receiving bandwidth.ConclusionPulse sequence bandwidth can be used to control the phase errors in the FSE signals due to low frequency EMI.  相似文献   

14.
PurposeTo introduce a simple analytical formula for estimating T2 from a single Double-Echo in Steady-State (DESS) scan.MethodsExtended Phase Graph (EPG) modeling was used to develop a straightforward linear approximation of the relationship between the two DESS signals, enabling accurate T2 estimation from one DESS scan. Simulations were performed to demonstrate cancellation of different echo pathways to validate this simple model. The resulting analytic formula was compared to previous methods for T2 estimation using DESS and fast spin-echo scans in agar phantoms and knee cartilage in three volunteers and three patients. The DESS approach allows 3D (256 × 256 × 44) T2-mapping with fat suppression in scan times of 3–4 min.ResultsThe simulations demonstrated that the model approximates the true signal very well. If the T1 is within 20% of the assumed T1, the T2 estimation error was shown to be less than 5% for typical scans. The inherent residual error in the model was demonstrated to be small both due to signal decay and opposing signal contributions. The estimated T2 from the linear relationship agrees well with reference scans, both for the phantoms and in vivo. The method resulted in less underestimation of T2 than previous single-scan approaches, with processing times 60 times faster than using a numerical fit.ConclusionA simplified relationship between the two DESS signals allows for rapid 3D T2 quantification with DESS that is accurate, yet also simple. The simplicity of the method allows for immediate T2 estimation in cartilage during the MRI examination.  相似文献   

15.
PurposeTo evaluate the use of the double-echo steady-state (DESS) sequence for acquiring high-resolution breast images with diffusion and T2 weighting.Materials and MethodsPhantom scans were used to verify the T2 and diffusion weighting of the DESS sequence. Image distortion was evaluated in volunteers by comparing DESS images and conventional diffusion-weighted images (DWI) to spoiled gradient-echo images. The DESS sequence was added to a standard clinical protocol, and the resulting patient images were used to evaluate overall image quality and image contrast in lesions.ResultsThe diffusion weighting of the DESS sequence can be easily modulated by changing the spoiler gradient area and flip angle. Radiologists rated DESS images as having higher resolution and less distortion than conventional DWI. Lesion-to-tissue contrast ratios are strongly correlated between DWI and DESS images (R = 0.83) and between T2-weighted fast spin-echo and DESS images (R = 0.80).ConclusionThe DESS sequence is able to acquire high-resolution 3D diffusion- and T2-weighted images in short scan times, with image quality that facilitates morphological assessment of lesions.  相似文献   

16.
PurposeTo obtain water and lipid diffusion-weighted images (DWIs) simultaneously, we devised a novel method utilizing chemical shift displacement-based separation of lipid tissue (SPLIT) imaging.Materials and methodsSingle-shot diffusion echo-planar imaging without fat suppression was used and the imaging parameters were optimized to separate water and lipid DWIs by chemical shift displacement of the lipid signals along the phase-encoding direction. Using the optimized conditions, transverse DWIs at the maximum diameter of the right calf were scanned with multiple b-values in five healthy subjects. Then, apparent diffusion coefficients (ADCs) were calculated in the tibialis anterior muscle (TA), tibialis bone marrow (TB), and subcutaneous fat (SF), as well as restricted and perfusion-related diffusion coefficients (D and D*, respectively) and the fraction of the perfusion-related diffusion component (F) for TA.ResultsWater and lipid DWIs were separated adequately. The mean ADCs of the TA, TB, and SF were 1.56 ± 0.03 mm2/s, 0.01 ± 0.01 mm2/s, and 0.06 ± 0.02 mm2/s, respectively. The mean D*, D, and F of the TA were 13.7 ± 4.3 mm2/s, 1.48 ± 0.05 mm2/s, and 4.3 ± 1.6%, respectively.ConclusionSPLIT imaging makes it possible to simply and simultaneously obtain water and lipid DWIs without special pulse sequence and increases the amount of diffusion information of water and lipid tissue.  相似文献   

17.
PurposeTo evaluate the biophysical processes that generate specific T2 values and their relationship to specific cerebrospinal fluid (CSF) content.Materials and methodsCSF T2s were measured ex vivo (14.1 T) from isolated CSF collected from human, rat and non-human primate. CSF T2s were also measured in vivo at different field strength in human (3 and 7 T) and rodent (1, 4.7, 9,4 and 11.7 T) using different pulse sequences. Then, relaxivities of CSF constituents were measured, in vitro, to determine the major molecule responsible for shortening CSF T2 (2 s) compared to saline T2 (3 s). The impact of this major molecule on CSF T2 was then validated in rodent, in vivo, by the simultaneous measurement of the major molecule concentration and CSF T2.ResultsEx vivo CSF T2 was about 2.0 s at 14.1 T for all species. In vivo human CSF T2 approached ex vivo values at 3 T (2.0 s) but was significantly shorter at 7 T (0.9 s). In vivo rodent CSF T2 decreased with increasing magnetic field and T2 values similar to the in vitro ones were reached at 1 T (1.6 s). Glucose had the largest contribution of shortening CSF T2 in vitro. This result was validated in rodent in vivo, showing that an acute change in CSF glucose by infusion of glucose into the blood, can be monitored via changes in CSF T2 values.ConclusionThis study opens the possibility of monitoring glucose regulation of CSF at the resolution of MRI by quantitating T2.  相似文献   

18.
PurposeTo evaluate images of non-contrast-enhanced 3D MR portography within a breath-hold (BH) using compressed sensing (CS) compared to standard respiratory-triggered (RT) sequences.Materials and methodsFifty-nine healthy volunteers underwent MR portography using two sequences of balanced steady-state free-precession (bSSFP) with time-spatial labeling inversion pulses (Time-SLIP): BH bSSFP-CS and RT bSSFP. Two radiologists independently scored the diagnostic acceptability to delineate the portal branches (MPV: main portal vein; RPV: right portal vein; LPV: left portal vein; RPPV: right posterior portal vein; and P4 and P8: portal branch of segment 4 and segment 8, respectively) and the overall image quality on a four-point scale. We assessed noninferiority of BH bSSFP-CS to RT bSSFP. For quantitative analysis, vessel-to-liver contrast (Cv-l) was calculated in MPV, RPV and LPV.ResultsBH bSSFP sequence was successfully performed with a 30-second acquisition time. The diagnostic acceptability scores of BH bSSFP-CS compared with RT bSSFP were statistically noninferior: MPV (95% CI for score difference of Reader 1 and Reader 2, respectively: [− 0.16, 0.06], [− 0.05, 0.02]), RPV ([− 0.00, 0.11], [− 0.01, 0.08]), LPV ([− 0.03, 0.10], [− 0.10, 0.03]), RPPV ([− 0.03, 0.10], [− 0.05, 0.05]), P4 ([− 0.13, 0.34], [− 0.28, 0.21]) and P8 ([− 0.21, 0.11], [− 0.25, − 0.02]). However, the overall image quality of BH bSSFP-CS did not show noninferiority ([− 0.61, − 0.24], [− 0.54, − 0.17]). Cv-l values were significantly lower in BH bSSFP-CS (P < 0.001).ConclusionCS enabled non-contrast-enhanced 3D bSSFP MR portography to be performed within a BH while maintaining noninferior diagnostic acceptability compared to standard RT bSSFP MR portography.  相似文献   

19.
PurposeSafe, sensitive, and non-invasive imaging methods to assess the presence, extent, and turnover of myocardial fibrosis are needed for early stratification of risk in patients who might develop heart failure after myocardial infarction. We describe a non-contrast cardiac magnetic resonance (CMR) approach for sensitive detection of myocardial fibrosis using a canine model of myocardial infarction and reperfusion.MethodsSeven dogs had coronary thrombotic occlusion of the left anterior descending coronary arteries followed by fibrinolytic reperfusion. CMR studies were performed at 7 days after reperfusion. A CMR spin-locking T1ρ mapping sequence was used to acquire T1ρ dispersion data with spin-lock frequencies of 0 and 511 Hz. A fibrosis index map was derived on a pixel-by-pixel basis. CMR native T1 mapping, first-pass myocardial perfusion imaging, and post-contrast late gadolinium enhancement imaging were also performed for assessing myocardial ischemia and fibrosis. Hearts were dissected after CMR for histopathological staining and two myocardial tissue segments from the septal regions of adjacent left ventricular slices were qualitatively assessed to grade the extent of myocardial fibrosis.ResultsHistopathology of 14 myocardial tissue segments from septal regions was graded as grade 1 (fibrosis area, < 20% of a low power field, n = 9), grade 2 (fibrosis area, 20–50% of field, n = 4), or grade 3 (fibrosis area, > 50% of field, n = 1). A dramatic difference in fibrosis index (183%, P < 0.001) was observed by CMR from grade 1 to 2, whereas differences were much smaller for T1ρ (9%, P = 0.14), native T1 (5.5%, P = 0.12), and perfusion (− 21%, P = 0.05).ConclusionA non-contrast CMR index based on T1ρ dispersion contrast was shown in preliminary studies to detect and correlate with the extent of myocardial fibrosis identified histopathologically. A non-contrast approach may have important implications for managing cardiac patients with heart failure, particularly in the presence of impaired renal function.  相似文献   

20.
ObjectivesWe validate a 4D strategy tailored for 3 T clinical systems to simultaneously quantify function and infarct size in wild type mice after ischemia/reperfusion, with improved spatial and temporal resolution by comparison to previous published protocols using clinical field MRI systems.MethodsC57BL/6J mice underwent 60 min ischemia/reperfusion (n = 14) or were controls without surgery (n = 6). Twenty-four hours after surgery mice were imaged with gadolinium injection and sacrificed for post-mortem MRI and histology with serum also taken for Troponin I levels. The double ECG- and respiratory-triggered 3D FLASH (Fast Low Angle Shot) gradient echo (GRE) cine sequence had an acquired isotropic resolution of 344 μm, TR/TE of 7.8/2.9 ms and acquisition time 25–35 min. The conventional 2D FLASH cine sequence had the same in-plane resolution of 344 μm, 1 mm slice thickness and TR/TE 11/5.4 ms for an acquisition time of 20–25 min plus 5 min for planning. Left ventricle (LV) and right ventricle (RV) volumes were measured and functional parameters compared 2D to 3D, left to right and for inter and intra observer reproducibility. MRI infarct volume was compared to histology.ResultsFor the function evaluation, the 3D cine outperformed 2D cine for spatial and temporal resolution. Protocol time for the two methods was equivalent (25–35 min). Flow artifacts were reduced (p = 0.008) and epi/endo-cardial delineation showed good intra and interobserver reproducibility. Paired t-test comparing ejection volume left to right showed no significant difference for 3D (p = 0.37), nor 2D (p = 0.30) and correlation slopes of left to right EV were 1.17 (R2 = 0.75) for 2D and 1.05 (R2 = 0.50) for 3D.Quantifiable ‘late gadolinium enhancement’ infarct volume was seen only with the 3D cine and correlated to histology (R2 = 0.89). Left ejection fraction and MRI-measured infarct volume correlated (R2 > 0.3).ConclusionsThe 4D strategy, with contrast injection, was validated in mice for function and infarct quantification from a single scan with minimal slice planning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号