首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
PurposeTo evaluate the feasibility of utilizing serial dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) prospectively for early prediction of neoadjuvant chemotherapy (NAC) response in nasopharyngeal carcinoma (NPC) patients.Materials and methodsSixty-three advanced NPC patients were recruited and received three DCE-MRI exams before treatment (Pre-Tx), 3 days (Day3-Tx) and 20 days (Day20-Tx) after initiation of chemotherapy (one NAC cycle). Early response to NAC was determined based on the third MRI scan and classified partial response (PR) as responders and stable disease (SD) as non-responders. After intensity-modulated radiotherapy (IMRT), complete response (CR) patients were classified as responders. The kinetic parameters (Ktrans, Kep, ve, and vp) derived from extended Tofts' model analysis and their corresponding changes ΔMetrics(0–X) (X = 3 or 20 days) were compared between the responders and non-responders using the Student's T-test or Mann–Whitney U test.ResultsCompared to the SD group, the PR group after one NAC cycle presented significantly higher mean Ktrans values at baseline (P = 0.011) and larger ΔKtrans(0–3) and ΔKep(0–3) values (P = 0.003 and 0.031). For the above parameters, we gained acceptable sensitivity (range: 66.8–75.0%) and specificity (range: 60.0–66.7%) to distinguish the non-responders from the responders and their corresponding diagnosis efficacy (range: 0.703–0.767). The PR group patients after one NAC cycle showed persistent inhibition of tumor perfusion by NAC as explored by DCE-MRI parameters comparing to the SD group (P < 0.05) and presented a higher cure ratio after IMRT than those who did not (83.3% vs. 73.8%).ConclusionsThis primarily DCE-MRI based study showed that the early changes of the kinetic parameters during therapy were potential imaging markers to predicting response right after one NAC cycle for NPC patients.  相似文献   

2.
PurposeTo quantify the differential plasma flow- (Fp-) and permeability surface area product per unit mass of tissue- (PS-) weighting in forward volumetric transfer constant (Ktrans) estimates by using a low molecular (Gd-DTPA) versus high molecular (Gadomer) weight contrast agent in dynamic contrast enhanced (DCE) MRI.Materials and methodsDCE MRI was performed using a 7T animal scanner in 14 C57BL/6J mice syngeneic for TRAMP tumors, by administering Gd-DTPA (0.9 kD) in eight mice and Gadomer (35 kD) in the remainder. The acquisition time was 10 min with a sampling rate of one image every 2 s. Pharmacokinetic modeling was performed to obtain Ktrans by using Extended Tofts model (ETM). In addition, the adiabatic approximation to the tissue homogeneity (AATH) model was employed to obtain the relative contributions of Fp and PS.ResultsThe Ktrans values derived from DCE-MRI with Gd-DTPA showed significant correlations with both PS (r2 = 0.64, p = 0.009) and Fp (r2 = 0.57, p = 0.016), whereas those with Gadomer were found only significantly correlated with PS (r2 = 0.96, p = 0.0003) but not with Fp (r2 = 0.34, p = 0.111). A voxel-based analysis showed that Ktrans approximated PS (< 30% difference) in 78.3% of perfused tumor volume for Gadomer, but only 37.3% for Gd-DTPA.ConclusionsThe differential contributions of Fp and PS in estimating Ktrans values vary with the molecular weight of the contrast agent used. The macromolecular contrast agent resulted in Ktrans values that were much less dependent on flow. These findings support the use of macromolecular contrast agents for estimating tumor vessel permeability with DCE-MRI.  相似文献   

3.
PurposeKinetic parameters derived from dynamic contrast-enhanced MRI (DCE-MRI) were suggested as a possible instrument for multi-parametric lesion characterization, but have not found their way into clinical practice yet due to inconsistent results. The quantification is heavily influenced by the definition of an appropriate arterial input functions (AIF). Regarding brain tumor DCE-MRI, there are currently several co-existing methods to determine the AIF frequently including different brain vessels as sources. This study quantitatively and qualitatively analyzes the impact of AIF source selection on kinetic parameters derived from commonly selected AIF source vessels compared to a population-based AIF model.Material and methods74 patients with brain lesions underwent 3D DCE-MRI. Kinetic parameters [transfer constants of contrast agent efflux and reflux Ktrans and kep and, their ratio, ve, that is used to measure extravascular-extracellular volume fraction and plasma volume fraction vp] were determined using extended Tofts model in 821 ROI from 4 AIF sources [the internal carotid artery (ICA), the closest artery to the lesion, the superior sagittal sinus (SSS), the population-based Parker model]. The effect of AIF source alteration on kinetic parameters was evaluated by tissue type selective intra-class correlation (ICC) and capacity to differentiate gliomas by WHO grade [area under the curve analysis (AUC)].ResultsArterial AIF more often led to implausible ve > 100% values (p < 0.0001). AIF source alteration rendered different absolute kinetic parameters (p < 0.0001), except for kep. ICC between kinetic parameters of different AIF sources and tissues were variable (0.08–0.87) and only consistent > 0.5 between arterial AIF derived kinetic parameters. Differentiation between WHO III and II glioma was exclusively possible with vp derived from an AIF in the SSS (p = 0.03; AUC 0.74).ConclusionThe AIF source has a significant impact on absolute kinetic parameters in DCE-MRI, which limits the comparability of kinetic parameters derived from different AIF sources. The effect is also tissue-dependent. The SSS appears to be the best choice for AIF source vessel selection in brain tumor DCE-MRI as it exclusively allowed for WHO grades II/III and III/IV glioma distinction (by vp) and showed the least number of implausible ve values.  相似文献   

4.
5.
Spinal myeloma and metastatic cancer cause similar symptoms and show similar imaging presentations, thus making them difficult to differentiate. In this study, dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) was performed to differentiate between 9 myelomas and 22 metastatic cancers that present as focal lesions in the spine. The characteristic DCE parameters, including the peak signal enhancement percentage (SE%), the steepest wash-in SE% during the ascending phase and the wash-out SE%, were calculated by normalizing to the precontrast signal intensity. The two-compartmental pharmacokinetic model was used to obtain Ktrans and kep. All nine myelomas showed the wash-out DCE pattern. Of the 22 metastatic cancers, 12 showed wash-out, 7 showed plateau, and 3 showed persistent enhancing patterns. The fraction of cases that showed the wash-out pattern was significantly higher in the myeloma group than the metastatic cancer group (9/9 = 100% vs. 12/22 = 55%, P = .03). Compared to the metastatic cancer group, the myeloma group had a higher peak SE% (226% ± 72% vs. 165% ± 60%, P = .044), a higher steepest wash-in SE% (169% ± 51% vs. 111% ± 41%, P = .01), a higher Ktrans (0.114 ± 0.036 vs. 0.077 ± 0.028 1/min, P = .016) and a higher kep (0.88 ± 0.26 vs. 0.49 ± 0.23 1/min, P = .002). The receiver operating characteristic analysis to differentiate between these two groups showed that the area under the curve was 0.798 for Ktrans, 0.864 for kep and 0.919 for combined Ktrans and kep. These results show that DCE-MRI may provide additional information for making differential diagnosis to aid in choosing the optimal subsequent procedures or treatments for spinal lesions.  相似文献   

6.
Rationale and objectivesTo comprehensively evaluate robustness and variations of DCE-MRI derived generalized-tracer-kinetic-model (GTKM) parameters in healthy and tumor tissues and impact of normalization in mitigating these variations on application to glioma.Materials (patients) and methodsA retrospective study included pre-operative 31 high-grade-glioma(HGG), 22 low-grade-glioma(LGG) and 33 follow-up data from 10 patients a prospective study with 4 HGG subjects. Voxel-wise GTKM was fitted to DCE-MRI data to estimate Ktrans, ve, vb. Simulations were used to evaluate noise sensitivity. Variation of parameters with-respect-to arterial-input-function (AIF) variation and data length were studied. Normalization of parameters with-respect-to mean values in gray-matter (GM) and white-matter (WM) regions (GM-Type-2, WM-Type-2) and mean curves (GM-Type-1, WM-Type-1) were also evaluated. Co-efficient-of-variation(CoV), relative-percentage-error (RPE), Box-Whisker plots, bar graphs and t-test were used for comparison.ResultsGTKM was fitted well in all tissue regions. Ktrans and ve in contrast-enhancing (CE) has shown improved noise sensitivity in longer data. vb was reliable in all tissues. Mean AIF and C(t) peaks showed ~38% and ~35% variations. During simulation, normalizations have mitigated variations due to changes in AIF amplitude in Ktrans and vb.. ve was less sensitive to normalizations. CoV of Ktrans and vb has reduced ~70% after GM-Type-1 normalization and ~80% after GM-Type-2 normalization, respectively. GM-Type-1 (p = 0.003) and GM-Type-2 (p = 0.006) normalizations have significantly improved differentiation of HGG and LGG using Ktrans.ConclusionKtrans and vb can be reliably estimated in normal-appearing brain tissues and can be used for normalization of corresponding parameters in tumor tissues for mitigating inter-subject variability due to errors in AIF. Normalized Ktrans and vb provided improved differentiation of HGG and LGG.  相似文献   

7.
PurposeTo investigate parotid perfusion in early-to-intermediate stage after parotid-sparing radiation dose using fat-saturated DCE-MRI, and to verify whether the perfusion alteration was related to radiation dose and the PSV.Methods and MaterialsThirty-two parotid glands from 16 consecutive patients with pathologically proven nasopharyngeal carcinoma treated by IMRT were examined. The parotid glands received a radiation dose of 28.9 ± 3.9 Gy with a PSV of 43.1% ± 13.9%. Perfusion parameters were calculated using time-shifted Brix model from fat-saturated DCE-MRI data before (pre-RT) and in early-to-intermediate stage after (post-RT) IMRT. Paired t-test was used to evaluate perfusion changes, while Pearson's correlation test was used to examine perfusion dependency on radiation dose and PSV. For multiple comparisons Bonferroni correction was applied.ResultsSuccessful fat saturation was achieved in 29 of 32 parotid glands. Compared with pre-RT, the post-RT parotid glands showed significantly higher A, peak enhancement, and wash-in slope, plus a lower Kel, suggesting a mixed effect of increased vascular permeability and acinar loss. Linear regression showed that peak enhancement was positively associated with radiation dose in post-RT parotid glands. Kel and slope were negatively associated with PSV, while time-to-peak was positively associated with PSV significantly.ConclusionsOur results suggest that time-shifted Brix model is feasible for quantifying parotid perfusion using DCE-MRI. The perfusion alterations in early-to-intermediate stage after IMRT might be related to a mixed effect of increased vascular permeability and acinar loss with dose and PSV dependencies.  相似文献   

8.
In this report the spectroscopic results for far infrared Fourier transform spectrum corresponding to the b-type transitions within the lowest lying trans-substrate (e0) have been presented. The calculated matrix elements connecting various K-levels suggest that ΔK = 1 transitions within the trans- subs-state should be quite strong but the transitions between the trans state to the gauche states would quite week (practically non-existent). This was also concluded by previous studies using microwave and millimeter wave regions (Pearson et al., 1982; Millar, 1995). The assignments were confirmed by direct observations at the spectrum and the agreement between the observed and calculated spectrum using precise energy levels reported by Pearson et al. (1982). All the strong RR and some RQ branch lines starting from K = 10  9 through K = 24  23 have been identified. State dependent expansion parameters for all the 15 sub-bands have been presented. These parameters can reproduce the experimental wave numbers within experimental uncertainty. An atlas for about 450 transition lines corresponding to transitions within the e0 torsional–vibrational species has been prepared. To our knowledge this is the first time the high resolution far infra-red spectral region study for ethanol have been performed.  相似文献   

9.
PurposeTo investigate the value of use of intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) as an adjunct to dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to distinguish benign from malignant breast lesions.Materials and methodsRetrospective analysis of data pertaining to 117 patients with breast lesions who underwent DCE-MRI and IVIM-DWI examination with 3.0 T MRI was conducted. A total of 128 lesions were pathologically confirmed (47 benign and 81 malignant). Between-group differences in DCE-MRI parameters (Morphology, enhancement pattern, maximum slope of increase (MSI) and time–signal curve (TIC) type) and IVIM-DWI parameters (f value, D value and D* value) were assessed. Multivariate logistic regression was performed to identify variables that distinguished benign from malignant breast lesions. The diagnostic performance of DCE-MRI and DCE-MRI plus IVIM-DWI, to distinguish benign from malignant breast lesions, was evaluated using pathology results as the gold standard.ResultsLesion morphology, MSI, and TIC type (P < 0.05), but not the enhancement pattern (P > 0.05), were significantly different between the benign and malignant groups. The f (8.53 ± 2.14) and D* (7.64 ± 2.07) values in the malignant group were significantly higher than those in the benign group (7.68 ± 1.97 and 6.83 ± 2.13, respectively), while the D value (0.99 ± 0.22) was significantly lower than that (1.34 ± 0.17) in the benign group (P < 0.05 for all). On logistic regression analysis, the sensitivity, specificity and accuracy of DCE-MRI were 90.1%, 70.2% and 82.8% respectively; the corresponding figures for the combination of IVIM-DWI and DCE-MRI were 88.8%, 85.1%, and 87.5%respectively.ConclusionIVIM-DWI method as an adjunct to DCE-MRI can improve the specificity and accuracy in differential diagnosis of benign and malignant lesions of breast.  相似文献   

10.
PurposeTo evaluate the perfusion parameters of inner and outer myometrium in healthy nulliparous and primiparous women who are and who are not currently using hormonal contraceptives by means of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI).Material and methodsWe performed pelvic 1.5 T DCE-MRI on 98 women: 18 nulliparous non-users, 30 nulliparous users, 12 primiparous non-users and 38 primiparous users of hormonal contraception (mean age respectively 26.4, 25.8, 30.23 and 28.18 years). The nulliparous non-users underwent DCE-MRI investigations during their follicular, ovulatory and luteal phase. Perfusion parameters (iAUC/volume, Ktrans, Kep and Ve) were assessed in the anterior and posterior junctional zone (JZ), outer myometrium and cervix.ResultsIn nulliparous non-users, the mean Ktrans and iAUC/volume showed a decrease from follicular to luteal phase (0.82 vs 0.55 min 1 for Ktrans, p = 0/027 and 1.28 vs 0.68 for iAUC/volume, p < 0.001). The anterior JZ demonstrated lower Ktrans (p = 0.050) and higher Kep (p = 0.012), in nulliparous non-users, lower Ktrans in nulliparous users (p < 0.001) and lower Ve in primiparous users (p = 0.012) than the anterior outer myometrium. Ktrans at the anterior and posterior JZ wall in nulliparous users was lower than in non-users (p = 0.001 and p = 0.013) and Ve at the anterior JZ wall in primiparous users was lower than in non-users (p = 0.044).ConclusionThis study provides data on normal perfusion parameters of inner and outer myometrium, which may be potentially useful in assisted reproductive therapy.  相似文献   

11.
PurposeTo investigate the diagnostic utilities of imaging parameters derived from T1-weighted imaging (T1WI), diffusion-weighted imaging (DWI) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to differentiate bone metastases from prostate cancer and benign red marrow depositions of the pelvic bone.Materials and methodsThirty-six lesions from 36 patients with prostate cancer were analyzed with T1WI, DWI, and DCE-MRI. The lesions were classified in the bone metastases (n = 22) and benign red marrow depositions (n = 14). Lesion-muscle ratio (LMR), apparent diffusion coefficient (ADC), volume transfer constant (Ktrans), reflux rate (Kep), and volume fraction of the extravascular extracellular matrix (Ve) values were obtained from the lesions. The imaging parameters of the both groups were compared using the Mann-Whitney U test, receiver operating characteristics (ROC) curves were analyzed. For the ROC curves, area under the curves (AUCs) were compared.ResultsThe ADC, Ktrans, Kep, and Ve values of bone metastases were significantly higher than those of benign red marrow depositions (Mann-Whitney U test, p < 0.05). However, there was no significant difference in LMR between the two groups (Mann-Whitney U test, p = 0.360). The AUCs of Ktrans, Kep, ADC, Ve, and LMR were 0.896, 0.844, 0.812, 0.724, and 0.448, respectively. In the pairwise comparison of ROC curves, the AUCs of Ktrans and Kep was significantly higher than LMR.ConclusionsKtrans, Kep, Ve, and ADC values can be used as imaging tools to differentiate bone metastases from prostate cancer and benign red marrow depositions of the pelvic bone.  相似文献   

12.
PurposeThis study aimed to investigate the prediction of early response to concurrent chemoradiotherapy (CCRT) through a combination of pretreatment multi-parametric magnetic resonance imaging (MRI) with clinical prognostic factors (CPF) in cervical cancer patients.MethodsEighty-five patients with pathologically confirmed cervical cancer underwent conventional MRI, intravoxel incoherent motion diffusion weighted imaging (IVIM-DWI), and dynamic contrast-enhanced MRI (DCE-MRI) before CCRT. The patients were divided into non- and residual tumor groups according to post-treatment MRI. Univariable and multivariable analyses were performed to pretreatment MRI parameters and CPF between the two groups, and optimal thresholds and predictive performance for post-treatment residual tumor occurrence were estimated by drawing the receiver operating characteristic (ROC) curve.ResultsThere were 52 patients in non- and 33 in residual group. The residual group showed a lower perfusion fraction (f) value and volume transfer constant (Ktrans) value, a higher apparent diffusion coefficient (ADC) value, diffusion coefficient (D) value and volume fraction of extravascular extracellular space (Ve) value, and a higher stage than the non-residual tumor group (all P < .05). D, Ktrans, Ve and stage were independent prognostic factors. The combination of D, Ktrans and Ve improved the diagnostic performance compared with individual MRI parameters. A further combination of these three MRI parameters with stage exhibited the highest predictive performance.ConclusionsPretreatment D, Ktrans, Ve and stage were independent prognostic factors for cervical cancer. The predictive capacity of multi-parametric MRI was superior to individual MRI parameters. The combination of multi-parametric MRI with CPF further improved the predictive performance.  相似文献   

13.
ObjectiveTo test the performance of free-breathing Dynamic Contrast-Enhanced MRI (DCE-MRI) using a radial volumetric interpolated breath-hold examination (VIBE) sequence combined with diffusion-weighted imaging (DWI) for quantitative solitary pulmonary nodule (SPN) assessment.MethodsA total of 67 SPN cases receiving routine MRI routine scans, DWI, and dynamic-enhanced MRI in our hospital from May 2017 to November 2018 were collected. These cases were divided into a malignant group and a benign group according to the characteristics of the SPNs. The quantitative DCE-MRI parameters (Ktrans, Kep, Ve) and apparent diffusion coefficient (ADC) values of the nodules were measured.ResultsThe Ktrans and Kep values in the malignant group were higher than those in the benign group, while the ADC values in the malignant group were lower than those in the benign group. Furthermore, the Ktrans value of adenocarcinoma was higher than that of squamous cell carcinoma and small cell carcinoma (P < 0.05). The Ve value was significantly different between non-small cell carcinoma and small cell carcinoma (P < 0.05). With an ADC value of 0.98 × 10−3 mm2/s as the threshold, the specificity and sensitivity to diagnose benign and malignant nodules was 90.6% and 80%, respectively.ConclusionHigh-temporal-resolution DCE-MRI using the r-VIBE technique in combination with DWI could contribute to pulmonary nodule analysis and possibly serve as a potential alternative to distinguish malignant from benign nodules as well as differentiate different types of malignancies.  相似文献   

14.
PurposeTo explore the application of histogram analysis in preoperative T and N staging of gastric cancers, with a focus on characteristic parameters of apparent diffusion coefficient (ADC) maps.Materials and methodsEighty-seven patients with gastric cancers underwent diffusion weighted magnetic resonance imaging (b = 0, 1000 s/mm2), which generated ADC maps. Whole-volume histogram analysis was performed on ADC maps and 7 characteristic parameters were obtained. All those patients underwent surgery and postoperative pathologic T and N stages were determined.ResultsFour parameters, including skew, kurtosis, s-sDav and sample number, showed significant differences among gastric cancers at different T and N stages. Most parameters correlated with T and N stages significantly and worked in differentiating gastric cancers at different T or N stages. Especially skew yielded a sensitivity of 0.758, a specificity of 0.810, and an area under the curve (AUC) of 0.802 for differentiating gastric cancers with and without lymph node metastasis (P < 0.001). All the parameters, except AUClow, showed good or excellent inter-observer agreement with intra-class correlation coefficients ranging from 0.710 to 0.991.ConclusionCharacteristic parameters derived from whole-volume ADC histogram analysis could help assessing preoperative T and N stages of gastric cancers.  相似文献   

15.
Emission spectra of SrH and SrD have been studied at high resolution using a Fourier transform spectrometer. The molecules have been produced in a high temperature furnace from the reaction of strontium metal vapor with H2/D2 in the presence of a slow flow of Ar gas. The spectra observed in the 18 000–19 500 cm?1 region consist of the 0–0 and 1–1 bands of the E2Π–X2Σ+ transition of the two isotopologues. A rotational analysis of these bands has been obtained by combining the present measurements with previously available pure rotation and vibration–rotation measurements for the ground state, and improved spectroscopic constants have been obtained for the E2Π state. The present analysis provides spectroscopic constants for the E2Π state as ΔG(½) = 1166.1011(15) cm?1, Be = 3.805503(32) cm?1, αe = 0.098880(47) cm?1, re = 2.1083727(89) Å for SrH, and ΔG(½) = 839.1283(23) cm?1, Be = 1.918564(15) cm?1, αe = 0.034719(23) cm?1, re = 2.1121943(83) Å for SrD.  相似文献   

16.
The far infrared spectrum of HCOOH was recorded at a high resolution (0.0009 cm?1) and long path length (72 m) at the far-infrared beamline, Canadian Light Source. Spectra were recorded in the region 62–300 cm?1, showing transitions from the trans-isomer.Ground state rotational transitions with Ka up to 30, were identified up to 175 cm?1, extending the observation reported in the literature. A total of 3321 transitions were assigned and fitted together with previous (4149) published data. An improved set of rotational parameters was obtained adopting the symmetric top (A) reduction of the rotational Hamiltonian in the Ir representation. The newly measured far infrared transitions allowed the determination of all diagonal and off diagonal 8th order parameters L and of some of the diagonal 10th order parameters P.  相似文献   

17.
Pure samples of cis,cis- and trans,trans-1,4-difluorobutadiene-2-d1 have been synthesized, and high-resolution (0.0015 cm?1) infrared spectra have been recorded for these nonpolar molecules in the gas phase. For the cis,cis isomer, the rotational structure in two C-type bands at 775 and 666 cm?1 and one A-type band at 866 cm?1 has been analyzed to yield a combined set of 2020 ground state combination differences (GSCDs). Ground state rotational constants fit to these GSCDs are A0 = 0.4195790(4), B0 = 0.0536508(8), and C0 = 0.0475802(9) cm?1. For the trans,trans isomer, three C-type bands at 856, 839, and 709 cm?1 have been investigated to give a combined set of 1624 GSCDs. Resulting ground state rotational constants for this isomer are A0 = 0.9390117(8), B0 = 0.0389225(4), and C0 = 0.0373778(3) cm?1. Small inertial defects confirm the planarity of both isomers in the ground state. Upper state rotational constants have been determined for most of the transitions. The ground state rotational constants for the two isotopologues will contribute to the data set needed for determining semiexperimental equilibrium structures for the nonpolar isomers of 1,4-difluorobutadiene.  相似文献   

18.
The infrared (IR) spectra corresponding to OCD bending vibration of asymmetrically deuterated methanol species CH2DOH have been recorded with a Fourier Transform Spectrometer. The spectrum shows a typical structure of a parallel a-type band. This is expected because the bending vibration mainly executed parallel to the symmetry axis The Q-branch lines are grouped closely around 896 cm−1 and the P- and R-Branches show complex structure. Nonetheless it was possible to assign a-type P- and R-branch lines up to K value of 8 and J value up to about 20 in most cases. The Q-branch lines for higher K values can be followed to about J = 15, the presence of which confirmed the assignments. The observations suggest that in the OCD bend some energy levels are highly interacted by highly excited torsional state from the ground torsional state. A full catalogue is presented along with the effective molecular parameters. An intensity anomaly was also observed in the transitions. So far it has been possible to assign only transitions between e0  e0 states. Plausible explanations of intensity anomaly are presented. Lastly, a number of optically pumped far infrared (FIR) laser lines have been assigned either to exact or tentative quantum states. These assignments should prove valuable for production of new FIR laser lines.  相似文献   

19.
PurposeTo explore quantitative parameters obtained by dynamic contrast-enhanced magnetic resonance imaging (DCE MRI) with Gd-EOB-DTPA in discriminating early-stage liver fibrosis (LF) in a rabbit model.Materials and methodsLF was established in 60 rabbits by the injection of 50% CCl4 oil solution, whereas 30 rabbits served as the control group. All rabbits underwent pathological examination to determine the LF stage using the METAVIR classification system. DCE MRI was performed, and quantitative parameters, including Ktrans, Kep, Ve, Vp and Re were measured and evaluated among the different LF stages using spearman correlation coefficients and receiver operating characteristic curve.ResultsIn all, 24, 25, and 22 rabbits had stage F0, stage F1, and stage F2 LF, respectively. Ktrans (r = 0.803) increased, and Kep (r = −0.495) and Re (r = −0.701) decreased with LF stage progression (P < 0.001), while no significant correlation was found for Ve or Vp. Ktrans and Re were significantly different between all LF stage pairs compared (F0 vs. F1, F0 vs. F2, F1 vs. F2, F0 vs. F1-F2, P < 0.05). With the exception of F0 vs. F1, Kep differed significantly between stages (P < 0.05). The AUC of Ktrans was higher than that of other quantitative parameters, with an AUC of 0.92, 0.99, 0.94 and 0.92 for staging F0 vs. F1, F0 vs. F2, F1 vs. F2, and F0 vs. F1-F2, respectively.ConclusionAmong quantitative parameters of Gd-EOB-DTPA DCE MRI, Ktrans was the best predictor for quantitatively differentiating early-stage LF.  相似文献   

20.
《Solid State Ionics》2006,177(3-4):237-244
Ongoing studies of the KHSeO4–KH2PO4 system aiming at developing novel proton conducting solids resulted in the new compound K2(HSeO4)1.5(H2PO4)0.5 (dipotassium hydrogenselenate dihydrogenphosphate). The crystals were prepared by a slow evaporation of an aqueous solution at room temperature. The structural properties of the crystals were characterized by single-crystal X-ray analysis: K2(HSeO4)1.5(H2PO4)0.5 (denoted KHSeP) crystallizes in the space group P 1¯ with the lattice parameters: a = 7.417(3) Å, b = 7.668(2) Å, c = 7.744(5) Å, α = 71.59(3)°, β = 87.71(4)° and γ = 86.04(6)°. This structure is characterized by HSeO4 and disordered (HxSe/P)O4 tetrahedra connected to dimers via hydrogen bridges. These dimers are linked and stabilized by additional hydrogen bonds (O–H–O) and hydrogen bridges (O–H…O) to build chains of dimers which are parallel to the [0, 1, 0] direction at the position x = 0.5.The differential scanning calorimetry diagram showed two anomalies at 493 and 563 K. These transitions were also characterized by optical birefringence, impedance and modulus spectroscopy techniques. The conductivity relaxation parameters of the proton conductors in this compound were determined in a wide temperature range. The transport properties in this material are assumed to be due to H+ protons hopping mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号