首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
ObjectivesTo evaluate the diagnostic performance of a new three-dimensional T1-weighted turbo-spin-echo sequence (3D T1-w TSE) compared to 3D contrast-enhanced angiography (CE-MRA) for stenosis measurement and compared to 2D T1-w TSE for intra-plaque hemorrhage (IPH) detection.MethodsEighty three patients underwent carotid MRI, using a new elliptic-centric phase encoding T1-weighted 3D TSE sequence in addition to the clinical protocol.Two observers evaluated image quality, presence of flow artifacts, and presence of intra-plaque hemorrhage, and computed the NASCET degree of stenosis for CE-MRA and for the new sequence. Inter-observer agreement and correlation between 3D TSE and CE-MRA for NASCET stenosis was estimated using Cohen's kappa, and correlation using linear regression and Bland-Altman plots.Histology was performed on endarterectomy samples for 18 patients. Sensitivity and specificity of 2D and 3D TSE for IPH diagnosis were computed.Results3D TSE showed better image quality than 2D TSE (p < 0.05). Interobserver agreement was good (kappa  0.86). Correlation between 3D TSE and CE-MRA was excellent (R = 0.95) for NASCET stenosis. Sensitivity and specificity for IPH diagnosis was 50% and 100% for 2D TSE and 100% and 83% for the 3D TSE.ConclusionsThe new 3D T1-w TSE allows both reliable measures of carotid stenosis, with a slight overestimation compared to CE-MRA (5%), and improved IPH identification, compared to 2D TSE.  相似文献   

2.
PurposeTo determine the clinical value of routine use of thin-section 3D MRI using 3D FSE sequences with a variable flip angle technique for internal derangements of the knee joint at 3 T.Method and MaterialsThirty-four knees in 34 patients suspected of having internal derangements of the knee joint were included. Following standard 2D MRI protocol including sagittal PDWI, T1WI and T2*WI, coronal fat-suppressed PDWI, and axial fat-suppressed PDWI with 3-4 mm thicknesses, fat-suppressed and water-excitation PDWI using 3D FSE sequences with a variable flip angle technique with 0.6 mm thickness were obtained in coronal plane and the three major planes with 1 mm thickness (3D MRI) was reformatted. The standard 2D MRI protocol and reformatted 3D MRI protocol (three sagittal 2D sequence images plus 3D MRI) were independently analyzed by two radiologists concerning presence or absence of lesions in the menisci, cartilage, and ligament. Interobserver agreements in both the MRI protocols were assessed by weighted-kappa coefficients. Regarding diagnostic accuracy, areas under the receiver operating characteristic curves (Az values) of both the MRI protocols were compared.ResultsThirty-eight meniscal lesions, 39 cartilage lesions, and 20 ligamentous lesions were surgically detected. Excellent interobserver agreements (kappa = 0.91–0.98) were seen in both the MRI protocols, with a slightly better tendency in the reformatted 3D MRI protocol. Average Az values in detection of the meniscal, cartilage, and ligamentous lesions were significantly higher in the reformatted 3D MRI protocol than in the standard 2D MRI protocol (p < 0.01 or p < 0.001).ConclusionRoutine use of reformatted thin-section 3D MRI using 3D FSE sequences with a variable flip angle technique may improve diagnostic accuracy and confidence in detection of internal derangements of the knee joint.  相似文献   

3.
PurposeA gravitational valve (GV) may be used to treat hydrocephalus, offering possible advantages that include avoidance of over drainage and long-term complications. Because a GV is made from metal, there are potential safety and other problems related to the use of MRI. The objective of this investigation was to evaluate MRI-related issues (i.e., magnetic field interactions, heating, and artifacts) for a newly developed, metallic GV.MethodsTests were performed on the GV (GAV 2.0) using well-accepted techniques to assess magnetic field interactions (translational attraction and torque, 3-Tesla), MRI-related heating (1.5-T/64-MH and 3-T/128-MHz, whole body averaged SAR, 2.7-W/kg and 2.9-W/kg, respectively), artifacts (3-Tesla; gradient echo and T1-weighted, spin echo sequences), and possible functional changes related to exposures to different MRI conditions (exposing six samples each to eight different pulse sequences at 1.5-T/64-MHz and 3-T/128-MHz).ResultsMagnetic field interactions were not substantial (deflection angle 2°, no torque) and heating was minor (highest temperature rise, ≥ 1.9 °C, highest background temperature rise, ≥ 1.7 °C). Artifacts on the gradient echo pulse sequence extended approximately 10 mm from the size and shape of the GV. The different exposures to 1.5-T/64-MHz and 3-T/128-MHz conditions did not alter or damage the operational aspects of the GV samples.ConclusionsThe findings demonstrated that MRI can be safely used in patients with this GV and, thus, this metallic implant is deemed acceptable or “MR Conditional” (i.e., using current labeling terminology), according to the conditions used in this study.  相似文献   

4.
PurposeIn this study we systematically investigated different Dynamic Contrast Enhancement (DCE)-MRI protocols in the spine, with the goal of finding an optimal protocol that provides data suitable for quantitative pharmacokinetic modelling (PKM).Materials and methodsIn 13 patients referred for MRI of the spine, DCE-MRI of the spine was performed with 2D and 3D MRI protocols on a 3T Philips Ingenuity MR system. A standard bolus of contrast agent (Dotarem - 0.2 ml/kg body weight) was injected intravenously at a speed of 3 ml/s. Different techniques for acceleration and motion compensation were tested: parallel imaging, partial-Fourier imaging and flow compensation. The quality of the DCE MRI images was scored on the basis of SNR, motion artefacts due to flow and respiration, signal enhancement, quality of the T1 map and of the arterial input function, and quality of pharmacokinetic model fitting to the extended Tofts model.ResultsSagittal 3D sequences are to be preferred for PKM of the spine. Acceleration techniques were unsuccessful due to increased flow or motion artefacts. Motion compensating gradients failed to improve the DCE scans due to the longer echo time and the T2* decay which becomes more dominant and leads to signal loss, especially in the aorta. The quality scoring revealed that the best method was a conventional 3D gradient–echo acquisition without any acceleration or motion compensation technique. The priority in the choice of sequence parameters should be given to reducing echo time and keeping the dynamic temporal resolution below 5 s. Increasing the number of acquisition, when possible, helps towards reducing flow artefacts. In our setting we achieved this with a sagittal 3D slab with 5 slices with a thickness of 4.5 mm and two acquisitions.ConclusionThe proposed DCE protocol, encompassing the spine and the descending aorta, produces a realistic arterial input function and dynamic data suitable for PKM.  相似文献   

5.
Magnetic resonance imaging and magnetic resonance angiography (MRI/MRA) are widely used for evaluating the moyamoya disease (MMD). This study compared the diagnostic accuracy of 7 Tesla (T) and 3 T MRI/MRA in MMD. In this case control study, 12 patients [median age: 34 years; range (10–66 years)] with MMD and 12 healthy controls [median age: 25 years; range (22–59 years)] underwent both 7 T and 3 T MRI/MRA. To evaluate the accuracy of MRI/MRA in MMD, five criteria were compared between imaging systems of 7 T and 3 T: Suzuki grading system, internal carotid artery (ICA) diameter, ivy sign, flow void of the basal ganglia on T2-weighted images, and high signal intensity areas of the basal ganglia on time-of-flight (TOF) source images. No difference was observed between 7 T and 3 T MRI/MRA in Suzuki stage, ICA diameter, and ivy sign score; while, 7 T MRI/MRA showed a higher detection rate in the flow void on T2-weighted images and TOF source images (p < 0.001). Receiver operating characteristic curves of both T2 and TOF criteria showed that 7 T MRI/MRA had higher sensitivity and specificity than 3 T MRI/MRA. Our findings indicate that 7 T MRI/MRA is superior to 3 T MRI/MRA for the diagnosis of MMD in point of detecting the flow void in basal ganglia by T2-weighted and TOF images.  相似文献   

6.
PurposeTo investigate the in-vivo precision and clinical feasibility of 3D-QALAS - a novel method for simultaneous three-dimensional myocardial T1- and T2-mapping.MethodsTen healthy subjects and 23 patients with different cardiac pathologies underwent cardiovascular 3 T MRI examinations including 3D-QALAS, MOLLI and T2-GraSE acquisitions. Precision was investigated in the healthy subjects between independent scans, between dependent scans and as standard deviation of consecutive scans. Clinical feasibility of 3D-QALAS was investigated for native and contrast enhanced myocardium in patients. Data were analyzed using mean value and 95% confidence interval, Pearson correlation, Paired t-tests, intraclass correlation and Bland-Altman analysis.ResultsAverage myocardial relaxation time values and SD from eight repeated acquisitions within the group of healthy subjects were 1178 ± 18.5 ms (1.6%) for T1 with 3D-QALAS, 52.7 ± 1.2 ms (2.3%) for T2 with 3D-QALAS, 1145 ± 10.0 ms (0.9%) for T1 with MOLLI and 49.2 ± 0.8 ms (1.6%) for T2 with GraSE.Myocardial T1 and T2 relaxation times obtained with 3D-QALAS correlated very well with reference methods; MOLLI for T1 (r = 0.994) and T2-GraSE for T2 (r = 0.818) in the 23 patients. Average native/post-contrast myocardial T1 values from the patients were 1166.2 ms/411.8 ms for 3D-QALAS and 1174.4 ms/438.9 ms for MOLLI. Average native myocardial T2 values from the patients were 53.2 ms for 3D-QALAS and 54.4 ms for T2-GraSE.ConclusionsRepeated independent and dependent scans together with the intra-scan repeatability, demonstrated all a very good precision for the 3D-QALAS method in healthy volunteers. This study shows that 3D T1 and T2 mapping in the left ventricle is feasible in one breath hold for patients with different cardiac pathologies using 3D-QALAS.  相似文献   

7.
PurposeTo evaluate the accuracy of susceptibility estimated from the principles of echo shifting with a train of observations (PRESTO) sequence using a 1.5 T MRI system, we conducted experiments on the human brain using the PRESTO sequence and compared our results with the susceptibility obtained from spoiled gradient-recalled echo (GRE) sequence with flow compensation using quantitative susceptibility mapping (QSM) reconstruction.Materials and methodsExperiments on the human brain were conducted on 12 healthy volunteers (27 ± 4 years) using PRESTO and spoiled GRE sequences on a 1.5 T scanner. The PRESTO sequence is an echo-shifted gradient echo sequence that allows high susceptibility sensitivity and rapid acquisition because of TE > TR compared with the spoiled GRE sequence. QSM analysis was performed on the obtained phase images using the iLSQR method. Estimated susceptibility maps were used for region of interest analyses and estimation of line profiles through iron-rich tissue and major vessels.ResultsOur results demonstrated that susceptibility maps were accurately estimated, without error, by QSM analysis of PRESTO and spoiled GRE sequences. Acquisition time in the PRESTO sequence was reduced by 43% compared with that in the spoiled GRE sequence. Differences did exist between susceptibility maps in PRESTO and spoiled GRE sequences for visualization and quantitative values of major blood vessels and the areas around themConclusionThe PRESTO sequence enables correct estimation of tissue susceptibility with rapid acquisition and may be useful for QSM analysis of clinical use of 1.5 T scanners.  相似文献   

8.
ObjectiveTo quantitatively evaluate induced phase errors in fast spin echo (FSE) signals due to low frequency electromagnetic inference (EMI).MethodsSpecific form of Bloch equation is numerically solved in time domain for two different FSE pulse sequences (ETL = 8) with two different bandwidths. A single spin is modeled at x = 10 cm, EMI frequencies are simulated from 1 to 1000 Hz and phase errors at different echo times are calculated.ResultsPhase errors in the received echo signals induced by EMI are significantly higher at low frequencies (< 200 Hz) than at high frequencies and the phase errors at low frequencies can be effectively reduced by using high receiving bandwidth.ConclusionPulse sequence bandwidth can be used to control the phase errors in the FSE signals due to low frequency EMI.  相似文献   

9.
ObjectivesTo investigate normative value and age-related change of brain magnetic resonance T1ρ relaxation at 1.5 T.MethodsThis study was approved by the local ethical committee with participants' written consent obtained. There were 42 adults healthy volunteers, including 20 males (age: 41 ± 16 (mean ± standard deviation) years, range: 22–68 years,) and 22 females (age: 39 ± 15 years, range: 21–62 years). MRI was performed at 1.5 T using 3D fluid suppressed turbo spin echo sequence. Regions-of-interests (ROIs) were obtained by atlas-based tissue segmentation and T1ρ was calculated by fitting the mean value to mono-exponential model. Correlation between T1ρ relaxation of brain gray matter regions and age was investigated.ResultsA regional difference among individual gray matter areas was noted; the highest values were observed in the hippocampus (98.37 ± 5.37 ms, median: 97.88 ms) and amygdala (94.95 ± 4.34 ms, median: 94.73 ms), while the lowest values were observed in the pallidum (83.81 ± 5.49 ms, median: 83.77 ms) and putamen (83.93 ± 4.76 ms, median: 83.99 ms). Gray matter T1ρ values decreased slowly (mean slope: − 0.256) and significantly (p < 0.05) with age in gray matter for subjects younger than 40 years old, while for subjects older than 40 years old there was no apparent correlation between T1ρ relaxation and age. Global white matter measured T1ρ value of 88.65 ± 3.47 ms (median: 87.86 ms), and the correlation with age was not significant (p = 0.18).ConclusionGray matter T1ρ relaxation demonstrates a bi-phase change with age in adults of 22–68 years.  相似文献   

10.
ObjectiveIn this study, we sought to investigate the feasibility of fast carotid artery MR angiography (MRA) by combining three-dimensional time-of-flight (3D TOF) with compressed sensing method (CS-3D TOF).Materials and methodsA pseudo-sequential phase encoding order was developed for CS-3D TOF to generate hyper-intense vessel and suppress background tissues in under-sampled 3D k-space. Seven healthy volunteers and one patient with carotid artery stenosis were recruited for this study. Five sequential CS-3D TOF scans were implemented at 1, 2, 3, 4 and 5-fold acceleration factors for carotid artery MRA. Blood signal-to-tissue ratio (BTR) values for fully-sampled and under-sampled acquisitions were calculated and compared in seven subjects. Blood area (BA) was measured and compared between fully sampled acquisition and each under-sampled one.ResultsThere were no significant differences between the fully-sampled dataset and each under-sampled in BTR comparisons (P > 0.05 for all comparisons). The carotid vessel BAs measured from the images of CS-3D TOF sequences with 2, 3, 4 and 5-fold acceleration scans were all highly correlated with that of the fully-sampled acquisition. The contrast between blood vessels and background tissues of the images at 2 to 5-fold acceleration is comparable to that of fully sampled images. The images at 2 × to 5 × exhibit the comparable lumen definition to the corresponding images at 1 ×.ConclusionBy combining the pseudo-sequential phase encoding order, CS reconstruction, and 3D TOF sequence, this technique provides excellent visualizations for carotid vessel and calcifications in a short scan time. It has the potential to be integrated into current multiple blood contrast imaging protocol.  相似文献   

11.
PurposeTo develop a technique for three dimensional (3D) high resolution joint imaging of intracranial and extracranial arterial walls with improved cerebrospinal fluid (CSF) suppression and good blood suppression based on T1 weighted sampling perfection with application optimized contrast using different angle evolutions (T1w-SPACE) and to compare this technique (hereafter, iSPACE) with alternating with nutation for tailored excitation (DANTE) prepared SPACE sequence (DANTE-SPACE) for their CSF suppression performance around the mid cerebral arteries (MCA) and blood suppression at carotid arteries.Materials and methodsEight volunteers and twelve patients were prospectively recruited in this institutional review board approved study. A custom designed 32-channel coil set covering the intracranial and extracranial arteries was used for signal reception. Imaging was performed in each subject using DANTE-SPACE and iSPACE. Signal-to-noise ratios (SNR) of the vessel walls at the MCA and carotid arteries, and contrast-to-noise ratios (CNR) between vessel wall and CSF at the MCA and between vessel wall and lumen at carotid arteries from the two sequences were compared.ResultsIn volunteers, contrast between CSF and white matter (surrogate for vessel wall signal) at the M2 segments in iSPACE was 67.9% higher than in DANTE-SPACE. At the carotid region, the SNR of vessel wall in iSPACE was 11.6% higher than DANTE-SPACE while the CNR in iSPACE was 13% higher than DANTE-SPACE. In patients, images with 0.6 mm isotropic resolution were obtained in 7.5 min. iSPACE showed 70.9% improvement in CNR between plaque and CSF at the M2 segments compared to DANTE-SPACE.ConclusionSimultaneous extracranial and intracranial arterial wall imaging using iSPACE improved CSF suppression significantly at the M2 segment of MCA while blood suppression was comparable to DANTE-SPACE. The technique achieved 3D images with 0.6 mm isotropic spatial resolution and took 7.5 min using a custom made coil set. Using this technique, intracranial plaque visualization was improved with no observable image SNR degradation.  相似文献   

12.
PurposeTo evaluate the use of the double-echo steady-state (DESS) sequence for acquiring high-resolution breast images with diffusion and T2 weighting.Materials and MethodsPhantom scans were used to verify the T2 and diffusion weighting of the DESS sequence. Image distortion was evaluated in volunteers by comparing DESS images and conventional diffusion-weighted images (DWI) to spoiled gradient-echo images. The DESS sequence was added to a standard clinical protocol, and the resulting patient images were used to evaluate overall image quality and image contrast in lesions.ResultsThe diffusion weighting of the DESS sequence can be easily modulated by changing the spoiler gradient area and flip angle. Radiologists rated DESS images as having higher resolution and less distortion than conventional DWI. Lesion-to-tissue contrast ratios are strongly correlated between DWI and DESS images (R = 0.83) and between T2-weighted fast spin-echo and DESS images (R = 0.80).ConclusionThe DESS sequence is able to acquire high-resolution 3D diffusion- and T2-weighted images in short scan times, with image quality that facilitates morphological assessment of lesions.  相似文献   

13.
PurposeThis study aimed to assess the effect of echo spacing in transverse magnetization (T2) signal decay of gel and fat (oil) samples. Additionally, we assess the feasibility of using spin coupling as a determinant of fat content.MethodsPhantoms of known T2 values, as well as vegetable oil phantoms, were scanned at 1.5 T scanner with a multi echo FSE sequence of variable echo spacing above and below the empirical threshold of 20 ms for echo train signal modulation (6.7, 13.6, 26.8, and 40 ms). T2 values were calculated from monoexponential fitting of the data. Relative signal loss between the four acquisitions of different echo spacing was calculated.ResultsAgreement in the T2 values of water gel phantom was observed in all acquisitions as opposed to fat phantom (oil) samples. Relative differences in signal intensity between two successive sequences of different echo spacing on composite fat/water regions of interest was found to be linearly correlated to fat fraction of the ROI.ConclusionThe sample specific degree of signal loss that was observed between different fat samples (vegetable oils) can be attributed to the composition of each sample in J coupled fat components. Hence, spin coupling may be used as a determinant of fat content.  相似文献   

14.
PURPOSE: To evaluate the feasibility of an optimized bright blood MRI protocol at 3 T in combination with contrast agent administration for the detection and characterization of aortic high-risk plaques for the improved workup of acute stroke patients. MATERIALS AND METHODS: ECG synchronized T1-weighted 3D gradient echo MRI was performed in 45 acute stroke patients. Data were acquired with high near isotropic spatial resolution (approximately 1 mm(3)) covering the entire thoracic aorta. To compensate for breathing and vessel motion artifacts, images were collected using respiratory navigator gating in combination with short diastolic data acquisition windows adjusted on a patient-by-patient basis. In patients with aortic plaques > or =3 mm in thickness, gadolinium contrast agent was administered and both pre- and post-contrast T1-weighted 3D measurements with identical vessel coverage were performed. RESULTS: Bright blood 3D MRI detected 33 high-risk plaques with an average maximum plaque thickness of 4.2+/-1.0 mm in 23 of 45 acute stroke patients. The availability of pre- and post-contrast images acquired within the same session enhanced the identification of calcified plaque components in 77% of all analyzed plaques: post-contrast MRI clearly improved the delineation of hypointense plaque cores in 23 of 30 cases and assisted in the classification of core shape and of core fraction. CONCLUSION: 3D bright blood MRI at 3 T was feasible for the detection of aortic high-risk sources and may help to improve the detection of causes of cerebral embolism in acute stroke patients.  相似文献   

15.
ObjectivesWe validate a 4D strategy tailored for 3 T clinical systems to simultaneously quantify function and infarct size in wild type mice after ischemia/reperfusion, with improved spatial and temporal resolution by comparison to previous published protocols using clinical field MRI systems.MethodsC57BL/6J mice underwent 60 min ischemia/reperfusion (n = 14) or were controls without surgery (n = 6). Twenty-four hours after surgery mice were imaged with gadolinium injection and sacrificed for post-mortem MRI and histology with serum also taken for Troponin I levels. The double ECG- and respiratory-triggered 3D FLASH (Fast Low Angle Shot) gradient echo (GRE) cine sequence had an acquired isotropic resolution of 344 μm, TR/TE of 7.8/2.9 ms and acquisition time 25–35 min. The conventional 2D FLASH cine sequence had the same in-plane resolution of 344 μm, 1 mm slice thickness and TR/TE 11/5.4 ms for an acquisition time of 20–25 min plus 5 min for planning. Left ventricle (LV) and right ventricle (RV) volumes were measured and functional parameters compared 2D to 3D, left to right and for inter and intra observer reproducibility. MRI infarct volume was compared to histology.ResultsFor the function evaluation, the 3D cine outperformed 2D cine for spatial and temporal resolution. Protocol time for the two methods was equivalent (25–35 min). Flow artifacts were reduced (p = 0.008) and epi/endo-cardial delineation showed good intra and interobserver reproducibility. Paired t-test comparing ejection volume left to right showed no significant difference for 3D (p = 0.37), nor 2D (p = 0.30) and correlation slopes of left to right EV were 1.17 (R2 = 0.75) for 2D and 1.05 (R2 = 0.50) for 3D.Quantifiable ‘late gadolinium enhancement’ infarct volume was seen only with the 3D cine and correlated to histology (R2 = 0.89). Left ejection fraction and MRI-measured infarct volume correlated (R2 > 0.3).ConclusionsThe 4D strategy, with contrast injection, was validated in mice for function and infarct quantification from a single scan with minimal slice planning.  相似文献   

16.
PurposeTo evaluate the feasibility of 3D fast spin-echo (FSE) imaging with compressed sensing (CS) for the assessment of shoulder.Materials and methodsTwenty-nine patients who underwent shoulder MRI including image sets of axial 3D-FSE sequence without CS and with CS, using an acceleration factor of 1.5, were included. Quantitative assessment was performed by calculating the root mean square error (RMSE) and structural similarity index (SSIM). Two musculoskeletal radiologists compared image quality of 3D-FSE sequences without CS and with CS, and scored the qualitative agreement between sequences, using a five-point scale. Diagnostic agreement for pathologic shoulder lesions between the two sequences was evaluated.ResultsThe acquisition time of 3D-FSE MRI was reduced using CS (3 min 23 s vs. 2 min 22 s). Quantitative evaluations showed a significant correlation between the two sequences (r = 0.872–0.993, p < 0.05) and SSIM was in an acceptable range (0.940–0.993; mean ± standard deviation, 0.968 ± 0.018). Qualitative image quality showed good to excellent agreement between 3D-FSE images without CS and with CS. Diagnostic agreement for pathologic shoulder lesions between the two sequences was very good (κ = 0.915–1).ConclusionsThe 3D-FSE sequence with CS is feasible in evaluating the shoulder joint with reduced scan time compared to 3D-FSE without CS.  相似文献   

17.
PurposeTo demonstrate the clinical feasibility of a new non-Cartesian cylindrically-distributed spiral 3D pseudo-continuous arterial spin labeling (pCASL) magnetic resonance imaging (MRI) pulse sequence in pediatric patients in quantifying cerebral blood flow (CBF) response to an acetazolamide (ACZ) vasodilator challenge.Materials and methodsMRI exams were performed on two 3 Tesla Philips Ingenia systems using 32 channel head coil arrays. After local institutional review board approval, the 3D spiral-based pCASL technique was added to a standard brain MRI exam and evaluated in 13 pediatric patients (average age: 11.7 ± 6.4 years, range: 1.4–22.2 years). All patients were administered ACZ for clinically indicated reasons. Quantitative whole-brain CBF measurements were computed pre- and post-ACZ to assess cerebrovascular reserve.Results3D spiral pCASL data were successfully reconstructed in all 13 cases. In 11 patients, CBF increased 2.8% to 93.2% after administration of ACZ. In the two remaining patients, CBF decreased by 2.4 to 6.0% after ACZ. The group average change in CBF due to ACZ was approximately 25.0% and individual changes were statistically significant (p < 0.01) in all patients using a paired t-test analysis. CBF perfusion data were diagnostically useful in supporting conventional MR angiography and clinical findings.Conclusion3D cylindrically-distributed spiral pCASL MRI provides a robust approach to assess cerebral blood flow and reserve in pediatric patients.  相似文献   

18.
Atherosclerotic plaques in the bifurcation of the carotid arteries can pose a significant health risk due to possible plaque rupture and subsequent stroke. The assessment of plaques, and evaluation of the risk they pose, can be performed with Black-Blood (BB) vessel wall magnetic resonance imaging. However, resolution at standard clinical field strengths (up to 3 T) is limited, hampering reliable assessment and diagnosis. The aim of this study was to investigate the benefits of 7 T MRI using a BB application that has been successful at clinical field strengths. Therefore, for BB imaging, each sequence was preceded with ‘Delay Alternating with Nutation for Tailored Excitation’ (DANTE) preparation pulses for blood signal suppression. A coil comprising a 4-channel Tx array was designed and built to provide the required excitation coverage for the DANTE train; and a 4-channel Rx array was constructed to target the carotid bifurcation. Human and phantom results showed satisfactory blood suppression and comparable SNR and CNR to 3 T, therefore demonstrating the feasibility of the application at 7 T. However, the imposed SAR restrictions led to long scan times and subsequent motion artifacts. Thus, more accurate local SAR supervision schemes are required which could lead to a further improvement of BB DANTE vessel wall imaging at 7 T.  相似文献   

19.
PurposeTo implement and evaluate interleaved blip-up, blip-down, non-segmented 3D echo planar imaging (EPI) with pseudo-continuous arterial spin labeling (pCASL) and post-processing for reduced susceptibility artifact cerebral blood flow (CBF) maps.Materials and methods3D EPI non-segmented acquisition with a pCASL labeling sequence was modified to include alternating k-space coverage along phase encoding direction (referred to as “blip-reversed”) for alternating dynamic acquisitions of control and label pairs. Eight volunteers were imaged on a 3T scanner. Images were corrected for distortion using spatial shifting transformation of the underlying field map. CBF maps were calculated and compared with maps obtained without blip reversal using matching gray matter (GM) images from a high resolution 3D scan. Additional benefit of using the correction for alternating blip-up and blip-down acquisitions was assessed by comparing to corrected blip-up only and corrected blip-down only CBF maps. Matched Student t-test of overlapping voxels for the eight volunteers was done to ascertain statistical improvement in distortion.ResultsMean CBF value in GM for the eight volunteers from distortion corrected CBF maps was 50.8 ± 9.9 ml/min/100 gm tissue. Corrected CBF maps had 6.3% and 4.1% more voxels in GM when compared with uncorrected blip up (BU) and blip down (BD) images, respectively. Student t-test showed significant reduction in distortion when compared with blip-up images and blip-down images (p < 0.001). When compared with corrected BU and corrected BD only CBF maps, BU and BD corrected maps had 2.3% and 1% more voxels (p = 0.006 and 0.04, respectively).ConclusionPseudo-continuous arterial spin labeling with non-segmented 3D EPI acquisition using alternating blip-reversed k-space traversal and distortion correction provided significantly better matching GM CBF maps. In addition, employing alternating blip-reversed acquisitions during pCASL acquisition resulted in statistically significant improvement over corrected blip-up and blip-down CBF maps.  相似文献   

20.
AimsTo develop a high-resolution, 3D late gadolinium enhancement (LGE) cardiovascular magnetic resonance imaging (MRI) technique for improved assessment of myocardial scars, and evaluate its performance against 2D breath-held (BH) LGE MRI using a surgically implanted animal scar model in the right ventricle (RV).Methods and resultsA k-space segmented 3D LGE acquisition using CENTRA-PLUS (Contrast ENhanced Timing Robust Acquisition with Preparation of LongitUdinal Signal; or CP) ordering is proposed. 8 pigs were surgically prepared with cardiac patch implantation in the RV, followed in 60 days by 1.5 T MRI. LGE with Phase-Sensitive Inversion Recovery (PSIR) were performed as follows: 1) 2DBH using pneumatic control, and 2) navigator-gated, 3D free-breathing (3DFB)-CP-LGE with slice-tracking. The animal heart was excised immediately after cardiac MR for scar volume quantification. RV scar volumes were also delineated from the 2DBH and 3DFB-CP-LGE images for comparison against the surgical standard. Apparent scar/normal tissue signal-to-noise ratio (aSNR) and contrast-to-noise ratio (aCNR) were also calculated.3DFB-CP-LGE technique was successfully performed in all animals. No difference in aCNR was noted, but aSNR was significantly higher using the 3D technique (p < 0.05). Against the surgical reference volume, the 3DFB-CP-LGE-derived delineation yielded significantly less volume quantification error compared to 2DBH-derived volumes (15 ± 10% vs 55 ± 33%; p < 0.05).ConclusionCompared to conventional 2DBH-LGE, 3DFB-LGE acquisition using CENTRA-PLUS provided superior scar volume quantification and improved aSNR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号