首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe the use of two-dimensional ultrashort echo time (2D UTE) sequences with minimum TEs of 8 μs to image and quantify cortical bone on a clinical 3T scanner. An adiabatic inversion pulse was used for long T(2) water and fat signal suppression. Adiabatic inversion prepared UTE acquisitions with varying TEs were used for T(2) measurement. Saturation recovery UTE acquisitions were used for T(1) measurement. Bone water concentration was measured with the aid of an external reference phantom. UTE techniques were evaluated on cadaveric specimens and healthy volunteers. A signal-to-noise ratio of around 30, contrast-to-noise ratio of around 27/20 between bone and muscle/fat were achieved in tibia in vivo with a nominal voxel size of 0.23 × 0.23 × 6.0 mm(3) in a scan time of 5 min. A mean T(1) of 223 ± 11 ms and mean T(2) of 390 ± 19 μs were found. Mean bone water concentrations of 23.3 ± 1.6% with UTE and 21.7 ± 1.3% with adiabatic inversion prepared UTE sequences were found in tibia in five normal volunteers. The results show that in vivo qualitative and quantitative evaluation of cortical bone is feasible with 2D UTE sequences.  相似文献   

2.
There is increasing interest in imaging short T2 species which show little or no signal with conventional magnetic resonance (MR) pulse sequences. In this paper, we describe the use of three-dimensional ultrashort echo time (3D UTE) sequences with TEs down to 8 μs for imaging of these species. Image contrast was generated with acquisitions using dual echo 3D UTE with echo subtraction, dual echo 3D UTE with rescaled subtraction, long T2 saturation 3D UTE, long T2 saturation dual echo 3D UTE with echo subtraction, single adiabatic inversion recovery 3D UTE, single adiabatic inversion recovery dual echo 3D UTE with echo subtraction and dual adiabatic inversion recovery 3D UTE. The feasibility of using these approaches was demonstrated in in vitro and in vivo imaging of calcified cartilage, aponeuroses, menisci, tendons, ligaments and cortical bone with a 3-T clinical MR scanner. Signal-to-noise ratios and contrast-to-noise ratios were used to compare the techniques.  相似文献   

3.
Tendons and entheses are magnetic resonance (MR) “invisible” when imaged with conventional clinical pulse sequences. When the highly ordered, collagen-rich fibers in tendons and entheses are placed at the magic angle, dipolar interactions are decreased and their T2s are often considerably increased. The bulk magnetic susceptibility of tendons and entheses also varies with orientation to B0, leading to a direction-dependent resonance frequency shift. Ultrashort echo time (UTE) sequences with a minimum TE of 8 μs provide high signal from both tendons and entheses. The combination of a UTE sequence with an interleaved undersampled variable TE acquisition scheme provides a new approach for fast spectroscopic imaging of short T2 tissues. This UTE spectroscopic imaging (UTESI) technique provides quantitative information including T2?, chemical shift and resonance frequency shift due to bulk susceptibility effect. In this article, the orientational effects on tendons and entheses were investigated using a UTESI sequence on a clinical 3-T scanner. T2? was found to increase fivefold for tendons and twofold for entheses due to the magic angle effect. A resonance frequency shift up to 1.2 ppm was observed for both tendons and entheses due to the bulk susceptibility effect when their orientation was changed from 0° to 90° relative to B0.  相似文献   

4.
Tissues with very short transverse relaxation time (T2) cannot be detected using conventional magnetic resonance (MR) sequences due to the rapid decay of excited MR signals. In this work, a multiecho sequence employing half-pulse excitation and spiral sampling was developed for ultrashort echo time (UTE) imaging of tissues with short T2. Spiral readout gradients were measured and precompensated to reduce gradient distortions due to eddy currents and gradient anisotropy. The effects of spatial blurring due to fast signal decay were investigated experimentally through spiral UTE (SUTE) imaging of rubber bands with different spiral sampling duration. The unwanted long T2 signals were suppressed through the use of an inversion pulse and nulling, and/or subtraction of a later echo image from the initial one. This technique has been applied to imaging of the short T2 components in brain white matter, knee cartilage, bone and carotid vessel wall of normal volunteers at 1.5 T. Preliminary results show high spatial resolution and excellent image contrast for a variety of short T2 tissues in the human body under a relatively short scan time. A quantitative comparison was also made between radial UTE and SUTE in terms of signal-to-noise ratio efficiency.  相似文献   

5.
Ultrashort TE (UTE) sequences allow direct visualization of tissues with very short T2 relaxation times, such as tendons, ligaments, menisci, and cortical bone. In this work, theoretical calculations, simulations, and phantom studies, as well as in vivo imaging were performed to maximize signal-to-noise ratio (SNR) for slice selective RF excitation for 2D UTE sequences. The theoretical calculations and simulations were based on the Bloch equations, which lead to analytic expressions for the optimal RF pulse duration and amplitude to maximize magnetic resonance signal in the presence of rapid transverse relaxation. In steady state, it was found that the maximum signal amplitude was not obtained at the classical Ernst angle, but at an either lower or higher flip angle, depending on whether the RF pulse duration or amplitude was varied, respectively.  相似文献   

6.
PurposeTo investigate three MR pulse sequences under high-frequency noninvasive ventilation (HF-NIV) at 3 T and determine which one is better-suited to visualize the lung parenchyma.MethodsA 3D ultra-short echo time stack-of spirals Volumetric Interpolated Breath-hold Examination (UTE Spiral VIBE), without and with prospective gating, and a 3D double-echo UTE sequence with spiral phyllotaxis trajectory (3D radial UTE) were performed at 3 T in ten healthy volunteers under HF-NIV. Three experienced radiologists evaluated visibility and sharpness of normal anatomical structures, artifacts assessment, and signal and contrast ratio computation. The median of the three readers‘scores was used for comparison, p < .05 was considered statistically significant. Incidental findings were recorded and reported.ResultsThe 3D radial UTE resulted in less artifacts than the non-gated and gated UTE Spiral VIBE in inferior (score 3D radial UTE = 3, slight artifact without blurring vs. score UTE Spiral VIBE non-gated and gated = 2, moderate artifact with blurring of anatomical structure, p = .018 and p = .047, respectively) and superior lung regions (score 3D radial UTE = 3, vs. score UTE Spiral VIBE non-gated = 2.5, p = .48 and score UTE Spiral VIBE gated = 1, severe artifact with no normal structure recognizable, p = .014), and higher signal and contrast ratios (p = .002, p = .093). UTE Spiral VIBE sequences provided higher peripheral vasculature visibility than the 3D radial UTE (94.4% vs 80.6%, respectively, p < .001). The HF-NIV was well tolerated by healthy volunteers who reported on average minor discomfort. In three volunteers, 12 of 18 nodules confirmed with low-dose CT were identified with MRI (average size 2.6 ± 1.2 mm).ConclusionThe 3D radial UTE provided higher image quality than the UTE Spiral VIBE. Nevertheless, a better nodule assessment was noticed with the UTE Spiral VIBE that might be due to better peripheral vasculature visibility, and requires confirmation in a larger cohort.  相似文献   

7.
In this paper, we aimed to investigate the feasibility of direct visualization of myelin, including myelin lipid and myelin basic protein (MBP), using two-dimensional ultrashort echo time (2D UTE) sequences and utilize phase information as a contrast mechanism in phantoms and in volunteers. The standard UTE sequence was used to detect both myelin and long T2 signal. An adiabatic inversion recovery UTE (IR-UTE) sequence was used to selectively detect myelin by suppressing signal from long T2 water protons. Magnitude and phase imaging and T2* were investigated on myelin lipid and MBP in the forms of lyophilized powders as well as paste-like phantoms with the powder mixed with D2O, and rubber phantoms as well as healthy volunteers. Contrast to noise ratio (CNR) between white and gray matter was measured. Both magnitude and phase images were generated for myelin and rubber phantoms as well white matter in vivo using the IR-UTE sequence. T2* values of ~ 300 μs were comparable for myelin paste phantoms and the short T2* component in white matter of the brain in vivo. Mean CNR between white and gray matter in IR-UTE imaging was increased from − 7.3 for the magnitude images to 57.4 for the phase images. The preliminary results suggest that the IR-UTE sequence allows simultaneous magnitude and phase imaging of myelin in vitro and in vivo.  相似文献   

8.
In ultrashort TE (UTE) imaging, the short T2 values of the tissues of interest are comparable to the k-space readout duration, which result in significant T2 decay during k-space readout. This decay consequently causes significant effects on signal and contrast in UTE sequences, which we evaluate in this paper using models that incorporate the gradient slew rate slew and maximal constant gradient strength gmax, in conjunction with objects of diameter L. The resulting signal and contrast relationships demonstrate steep signal changes between T2 values of ~ 50–500 μs, corresponding to high T2 weighted contrast in this range. When γ⋅gmax2/(4π⋅slew) > 1/(2 L), termed the “ramp only” regime, gmax has no significant effect whereas decreasing slew leads to decreases in signal amplitude and shifts the contrast peak to higher T2 values. When γ⋅gmax2/(4π⋅slew) < 1/(2 L), termed the “mixed gradient” regime, both gmax and slew have significant effects, where decreases in either gmax or slew lead to lower signal amplitudes and shifts the contrast peak to higher T2 values. Under typical scan settings, the “ramp only” regime is usually dominant. Further, we demonstrate an unusual dependence of T2 weighted signal and contrast on object size, whereby objects with smaller values of L demonstrate lower signal amplitudes and peak contrast at higher T2 values, compared to otherwise identical objects with larger L. These results improve understanding of T2 weighted signal and contrast properties in short T2 tissue imaging with UTE.  相似文献   

9.
包尚联  杜江  高嵩 《物理学报》2013,62(8):88701-088701
骨质量尤其是骨皮质质量的评价方法对骨病的诊断和治疗有重要意义. 随着社会快速老龄化, 如何非侵入地获得准确实用的骨质量评价指标已成为医学物理领域亟待解决的热点问题. 目前有多种骨质量评价方法, 其中双能X射线吸收法获得的骨矿密度值是评价骨质量的现行金标准, 但这个参数有明显缺陷, 如不能反映骨皮质中的有机基质、微结构、孔隙度及灌注等情况, 所以不能准确诊断骨质疏松和预测骨折等疾病. 由于骨的磁共振信号衰减极快,所以常规磁共振成像技术不能探测到骨的信号. 近年来随着理论、方法和设备的不断进步, 超短回波磁共振骨成像成为可能. 本文简要介绍超短回波磁共振骨成像的基础物理理论, 结合作者所在实验室的研究工作对各类定性及定量超短回波磁共振骨皮质成像新方法进行综述, 总结各类方法的特点、适用范围及不足, 指出进一步研究的方向、重点及步骤, 对超短回波磁共振成像在骨质量评估方面的理论研究及工程应用具有指导意义. 关键词: 超短回波 核磁共振成像 骨矿物密度 骨皮质  相似文献   

10.
PurposeNormal adult cortical bone has a very short T2 and characteristically produces no signal with pulse sequence echo times (TEs) routinely used in clinical practice. We wished to determine whether it was possible to use ultrashort TE (UTE) pulse sequences to detect signal from cortical bone in human subjects and use this signal to characterise this tissue.Subjects and MethodsSeven volunteers and 10 patients were examined using ultrashort TE pulse sequences (TE=0.07 or 0.08 ms). Short and long inversion as well as fat suppression pulses were used as preparation pulses. Later echo images were also obtained as well as difference images produced by subtracting a later echo image from a first echo image. Saturation pulses were used for T1 measurement and sequences with progressively increasing TEs for T2* measurement. Intravenous gadodiamide was administered to four subjects.ResultsSignal in cortical bone was detected with UTE sequences in children, normal adults and patients. This signal was usually made more obvious by subtracting a later echo image from the first provided that the signal-to-noise ratio was sufficiently high.Normal mean adult T1s ranged from 140 to 260 ms, and mean T2*s ranged from 0.42 to 0.50 ms. T1 increased significantly with age (P<.01).Increased signal was observed after contrast enhancement in the normal volunteer and the three patients to whom it was administered.Reduction in signal from short T2 components was seen in acute fractures, and increase in signal in these components was seen with new bone formation after fracture malunion. In a case of osteoporosis, bone cross-sectional area and signal level appeared reduced.ConclusionSignal can be detected from normal and abnormal cortical bone with UTE pulse sequences, and this can be used to measure its T1 and T2* as well as observe contrast enhancement. Difference images are of value in increasing the conspicuity of cortical bone and observing abnormalities in disease.  相似文献   

11.
Multiple sclerosis (MS) causes demyelinating lesions in the white matter and increased iron deposition in the subcortical gray matter. Myelin protons have an extremely short T2* (< 1 ms) and are not directly detected with conventional clinical magnetic resonance (MR) imaging sequences. Iron deposition also reduces T2*, leading to reduced signal on clinical sequences. In this study we tested the hypothesis that the inversion recovery ultrashort echo time (IR-UTE) pulse sequence can directly and simultaneously image myelin and iron deposition using a clinical 3 T scanner. The technique was first validated on a synthetic myelin phantom (myelin powder in D2O) and a Feridex iron phantom. This was followed by studies of cadaveric MS specimens, healthy volunteers and MS patients. UTE imaging of the synthetic myelin phantom showed an excellent bi-component signal decay with two populations of protons, one with a T2* of 1.2 ms (residual water protons) and the other with a T2* of 290 μs (myelin protons). IR-UTE imaging shows sensitivity to a wide range of iron concentrations from 0.5 to ~ 30 mM. The IR-UTE signal from white matter of the brain of healthy volunteers shows a rapid signal decay with a short T2* of ~ 300 μs, consistent with the T2* values of myelin protons in the synthetic myelin phantom. IR-UTE imaging in MS brain specimens and patients showed multiple white matter lesions as well as areas of high signal in subcortical gray matter. This in specimens corresponded in position to Perl's diaminobenzide staining results, consistent with increased iron deposition. IR-UTE imaging simultaneously detects lesions with myelin loss in the white matter and iron deposition in the gray matter.  相似文献   

12.
超短回波时间(ultra-short echo-time,UTE)成像在科研和临床诊断上有着良好的应用前景,但是其k空间轨迹极易受到梯度涡流和梯度延时等因素的影响而产生失真,会严重影响磁共振图像重建的质量.该文分析了轨迹失真对UTE图像的影响,并提出了一种改进的轨迹失真校正方法.实验表明,该方法能够明显减轻UTE图像中轨迹失真的影响、改善图像质量,还可以降低UTE技术对磁共振成像(MRI)硬件系统性能的要求,有助于UTE方法的推广.  相似文献   

13.
BACKGROUND: We wished to assess the feasibility of imaging the knee with ultrashort TE (UTE) pulse sequences. SUBJECTS AND METHODS: Five volunteers and 16 patients were studied with UTE (TE=0.08 ms) sequences including later echoes. Conventional fat-suppressed images and difference images were also produced by subtracting a later echo from the first. Gadodiamide enhancement was used. RESULTS: High signal was obtained in tendons, ligaments, menisci and periosteum. Normal contrast enhancement was seen in these structures. Deep and superficial layers were seen in the articular cartilage. Cartilage defects were identified. The red zone could be differentiated from the white zone of the meniscus. Meniscal tears and degeneration were observed with low signal on subtraction images. Enhancement was seen within the anterior and posterior cruciate ligaments and associated scar tissue. CONCLUSION: Ultrashort TE imaging provides new options to visualize anatomy, manipulate conspicuity, observe contrast enhancement and demonstrate disease of the knee.  相似文献   

14.
Quantifying T1 relaxation times is a challenge because inhomogeneities of the B1 field have to be corrected to obtain proper values. It is a particular challenge in tissues with short T2 values, for which conventional MRI techniques do not provide sufficient signal. Recently, a B1-field correction technique called AFI (Actual Flip angle Imaging) has been introduced that can be combined with UTE (ultra-short echo-time) sequences, which have much shorter echo times compared to conventional MRI techniques, allowing quantification of signal in short T2 tissues. A disadvantage of AFI is that it requires very long relaxation delays between repetitions to minimize the influence of imperfect spoiling of transverse magnetization on signal behavior. In this work, we propose a novel spoiling scheme for the AFI sequence that efficiently provides accurate B1 correction maps with strongly reduced acquisition time. We validated the method with both phantom and preliminary in vivo results.  相似文献   

15.
Functional magnetic resonance imaging (MRI) with a new intravascular contrast agent, monocrystalline iron oxide nanoparticles (MION), was applied to assess the effect of transpupillary thermotherapy in a rabbit model of choroidal melanoma. 3D-spoiled gradient recalled sequences were used for quantitative assessment of blood volume. The MRI-parameters were 5/22/35 degrees (time of repetition (TR)/echo delay (TE)/flip angle (FA)) for T(1)- and 50/61/10 degrees for T(2)-weighted sequences. Images were collected before and at different times after MION injection. In all untreated tissues studied, MION reduced the T(2)-weighted signal intensity within 0.5 h and at 24 h (all p <== 0.012), whereas no significant changes were detected in treated tumors. T(1)-weighted images also revealed differences of MION-related signal changes between treated tumors and other tissues, yet at lower sensitivity and specificity than T(2). The change of T(2)-weighted MRI signal caused by intravascular MION allows early distinction of laser-treated experimental melanomas from untreated tissues. Further study is necessary to determine whether MRI can localize areas of tumor regrowth within tumors treated incompletely.  相似文献   

16.
PurposeThe development of ultrashort echo time (UTE) MRI sequences has led to improved imaging of tissues with short T2 relaxation times, such as the deep layer cartilage and meniscus. UTE combined with adiabatic T preparation (UTE-Adiab-T) is an MRI measure with low sensitivity to the magic angle effect. This study aimed to investigate the sensitivity of UTE-Adiab-T to mechanical load-induced deformations in the tibiofemoral cartilage and meniscus of human cadaveric knee joints.MethodsEight knee joints from young (42 ± 12 years at death) donors were evaluated on a 3 T scanner using the UTE-Adiab-T sequence under four sequential loading conditions: load = 0 N (Load0), load = 300 N (Load1), load = 500 N (Load2), and load = 0 N (Unload). UTE-Adiab-T was measured in the meniscus (M), femoral articular cartilage (FAC), tibial articular cartilage (TAC), articular cartilage regions uncovered by meniscus (AC-UC), and articular cartilage regions covered by meniscus (AC-MC) within region of interests (ROIs) manually selected by an experienced MR scientist. The Kruskal–Wallis test, with corrected significance level for multiple comparisons, was used to examine the UTE-Adiab-T differences between different loading conditions.ResultsUTE-Adiab-T decreased in all grouped ROIs under both Load1 and Load2 conditions (−18.7% and − 16.9% for M, −18.8% and − 12.6% for FAC, −21.4% and − 10.7% for TAC, −26.2% and − 13.9% for AC-UC, and − 16.9% and − 10.7% for AC-MC). After unloading, average UTE-Adiab-T increased across all ROIs and within a lower range compared with the average UTE-Adiab-T decreases induced by the two previous loading conditions. The loading-induced differences were statistically non-significant.ConclusionsWhile UTE-Adiab-T reduction by loading is likely an indication of tissue deformation, the increase of UTE-Adiab-T within a lower range by unloading implies partial tissue restoration. This study highlights the UTE-Adiab-T technique as an imaging marker of tissue function for detecting deformation patterns under loading.  相似文献   

17.
In this communication we present a method for single-slice mapping of ultrashort transverse relaxation times T(2). The RF pulse sequence consists of a spin echo preparation of the magnetization followed by slice-selective ultrashort echo time (UTE) imaging with radial k-space sampling. In order to keep the minimum echo time as small as possible, avoid out-of-slice contamination and signal contamination due to unwanted echoes, the implemented pulse sequence employs a slice-selective 180° RF refocusing pulse and a 4-step phase cycle. The slice overlap of the two slice-selective RF pulses was investigated. An acceptable Gaussian slice profile could be achieved by adjusting the strength of the two slice-selection gradients. The method was tested on a short T(2) phantom consisting of an arrangement of a roll of adhesive tape, an eraser, a piece of modeling dough made of Plasticine?, and a 10% w/w agar gel. The T(2) measurements on the phantom revealed exponential signal decays for all samples with T(2)(adhesive tape)=(0.5 ± 0.1)ms, T(2)(eraser)=(2.33 ± 0.07)ms, T(2)(Plasticine?)=(2.8 ± 0.06)ms, and T(2)(10%agar)=(9.5 ± 0.83)ms. The T(2) values obtained by the mapping method show good agreement with the T(2) values obtained by a non-selective T(2) measurement. For all samples, except the adhesive tape, the effective transverse relaxation time T(2)(?) was significantly shorter than T(2). Depending on the scanner hardware the presented method allows mapping of T(2) down to a few hundreds of microseconds. Besides investigating material samples, the presented method can be used to study the rapidly decaying MR-signal from biological tissue (e.g.: bone, cartilage, and tendon) and quadrupolar nuclei (e.g.: (23)Na, (35)Cl, and (17)O).  相似文献   

18.
Factors influencing contrast in fast spin-echo MR imaging.   总被引:5,自引:0,他引:5  
Multi-echo pulse sequences for producing T2-weighted images in much reduced imaging times have recently been developed for routine clinical use. A number of recent articles have described the contrast obtained with fast spin-echo (FSE) sequences and have generally indicated that they depict tissues very similarly to conventional spin-echo (SE) imaging. There are, however, some important differences in contrast between some tissues in FSE images. This work presents a detailed study of the contrast obtained with FSE imaging sequences and examines the image sequence and tissue parameters which influence contrast. The use of multiple refocusing pulses produces several subtle effects not seen in conventional SE imaging sequences, and in this study the precise nature and extent of such effects are described. The relative contributions to image contrast of magnetization transfer, the decoupling of J-modulation effects, the production of stimulated echoes and direct saturation effects, of diffusion and of the effects of the differential attenuation of different spatial frequencies, are each quantified. The mechanisms responsible for the brighter fat signal seen in FSE images, as well as the loss of signal from some other tissues, are explained. Computer simulations, phantom experiments, and clinical images are all used to support the conclusions.  相似文献   

19.
In this study, in order to differentiate cavernous hemangioma and hepatic metastases, rapid acquisition relaxation enhanced (RARE) sequence was used. First, in vivo measurements of T1, T2 relaxation times and proton density were obtained using T1, T2 calculation protocol (TOMIKON S50, 0.5T) and multipoint techniques. These measurements were made from regions of interest placed over the liver, spleen (because of similarity of relaxation time values between hepatic metastases and spleen) and cavernous hemangioma (HCH). Based on these intrinsic parameters, T2 curves signal intensity of three different tissues were constructed. At TE = 500 ms, the signal intensity of the liver and spleen has been near zero whereas in HCH, the signal intensity remained. As RARE sequence is very similar to spin echo (SE), by replacing effective TE(ETE) = 500 ms in the RARE equation, two dimensional contrast-to-noise ratio (CNR) contour plots were constructed demonstrating signal intensity contrast between liver-spleen, liver-Hemangioma for two different scan times (3 min, 7.5 s) and pulse timing. Then, optimal RARE factor and inter echo times were obtained in order to have maximum CNR between liver-Hemangioma and minimum CNR between liver-spleen. These optimal parameters were performed on ten normal and five persons with known HCH. Images showed that in both scan times (3 min, 7.5 s); the liver and spleen were suppressed whereas the HCH was enhanced. The image quality in the scan time of 3 min was better than the scan time of 7.5 s. Moreover, in this study, two different sequences were compared: i) Multi-slice single echo (MSSE) for T1 weighted image ii) RARE (ETE = 80 ms) for T2-weighted image. This comparison was done to show maximum CNR between liver-spleen (metastases) and to choose a better sequence for detecting metastases. CNR in the RARE sequence was more than in the MSSE sequence.  相似文献   

20.
The aim of this study was to test the ability of magnetic resonance imaging (MRI) technique to characterize gonad development and to determine the sex of live Pacific oysters through their shells. A preliminary nuclear magnetic resonance (NMR) relaxometry study was conducted to characterize T1 and T2 NMR relaxation parameters for the main oyster organs. This showed that T1-weighted MRI sequences were most appropriate to optimize contrasts between tissues in images. The results showed that gray levels of gonads in images acquired with gradient-echo sequence were variably affected by T2* weighting effect. However, the ovaries systematically gave a hypersignal in spin-echo T1-weighted images, and stack histograms of female oysters showed a peak well separated from that of male oysters. An automated method is proposed to quantify the development of oysters and their gonad maturation and to identify their sex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号