首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The adsorptions of COS, H2S and O2 were investigated over the TGH catalyst in this paper. It was found that the numbers of basic centers and basic intensities were reduced over the deactivated TGH catalyst. The PT-IR results of COS+H2S+O2 co-adsorption on the TGH catalyst show that the main causes of catalyst deactivation is the formation of element sulfur and trace sulfate.  相似文献   

2.
Low-temperature heat capacities of the solid compound NaCuAsO4·1.5H2O(s)were measured using a precision automated adiabatic calorimeter over a temperature range of T=78 K to T=390 K.A dehydration process occurred in the temperature range of T=368-374 K.The peak temperature of the dehydration was observed to be TD=(371.828±0.146)K by means of the heat-capacity measurement.The molar enthalpy and entropy of the dehydration were ΔDHm=(18.571±0.142)kJ/mol and ΔDSm=(49.946±0.415)J/(K·mol),respectively.The experimental values of heat capacities for the solid(Ⅰ)and the solid-liquid mixture(Ⅱ)were respectively fitted to two polynomial equations by the least square method.The smoothed values of the molar heat capacities and the fundamental thermodynamic functions of the sample relative to the standard reference temperature 298.15 K were tabulated at an interval of 5 K.  相似文献   

3.
In this work, a series of coal-based active carbon(CAC) catalysts loaded by Al2O3were prepared by sol-gel method and used for the simultaneous catalytic hydrolysis of carbonyl sulfide(COS) and carbon disulfide(CS2) at relatively low temperatures of 30-70 ℃. The influences of calcinations temperatures and operation conditions such as: reaction temperature, O2concentration, gas hourly space velocity(GHSV) and relative humidity(RH) were also discussed respectively. The results showed that catalysts with 5.0 wt% Al2O3calcined at 300 ℃ had superior activity for the simultaneous catalytic hydrolysis of COS and CS2. When the reaction temperature was above 50 ℃, catalytic hydrolysis activity of COS could be enhanced but that of CS2was inhibited. Too high RH could make the catalytic hydrolysis activities of COS and CS2decrease. A small amount of O2introduction could enhance the simultaneous catalytic hydrolysis activities of COS and CS2.  相似文献   

4.
In this work, a series of coal-based active carbon(CAC) catalysts loaded by Al2O3were prepared by sol-gel method and used for the simultaneous catalytic hydrolysis of carbonyl sulfide(COS) and carbon disulfide(CS2) at relatively low temperatures of 30-70 ℃. The influences of calcinations temperatures and operation conditions such as: reaction temperature, O2concentration, gas hourly space velocity(GHSV) and relative humidity(RH) were also discussed respectively. The results showed that catalysts with 5.0 wt% Al2O3calcined at 300 ℃ had superior activity for the simultaneous catalytic hydrolysis of COS and CS2. When the reaction temperature was above 50 ℃, catalytic hydrolysis activity of COS could be enhanced but that of CS2was inhibited. Too high RH could make the catalytic hydrolysis activities of COS and CS2decrease. A small amount of O2introduction could enhance the simultaneous catalytic hydrolysis activities of COS and CS2.  相似文献   

5.
Low-temperature heat capacities of the solid compound Zn(C4H7O5)2(s) were measured in a temperature range from 78 to 374 K, with an automated adiabatic calorimeter. A solid-to-solid phase transition occurred in the temperature range of 295?322 K. The peak temperature, the enthalpy, and entropy of the phase transition were determined to be (316.269±1.039) K, (11.194±0.335) kJ?mol-1, and (35.391±0.654) J?K-1?mol-1, respectively. The experimental values of the molar heat capacities in the temperature regions of 78?295 K and 322?374 K were fitted to two polynomial equations of heat capacities(Cp,m) with reduced temperatures(X) and [X = f(T)], with the help of the least squares method, respectively. The smoothed molar heat capacities and thermodynamic functions of the compound, relative to that of the standard reference temperature 293.15 K, were calculated on the basis of the fitted polynomials and tabulated with an interval of 5 K. In addition, the possible mechanism of thermal decomposition of the compound was inferred by the result of TG-DTG analysis.  相似文献   

6.
Catalysts using a-FeOOH nanoparticles as the active ingredient were tested by a microreactor-chromatography assessing apparatus at atmospheric pressure between 25 and 60C with a gas hourly space velocity of 10,000 h-1, while the removal performance of H2S with catalysts was investigated using the thermal gravimetric method. The results show that the catalysts are highly active for COS hydrolysis at low temperatures (<60C) and high gas hourly space velocity, and the highest activity can reach 100%. The catalyst is particularly stable for 12 h, and no deactivation is observed. Nanoparticle a-FeOOH prepared using hydrated iron sulfate shows higher COS hydrolysis activity, and the optimum calcination temperature for the catalyst is 260C. In addition, the catalysts can remove COS and H2S simultaneously, and 60C is favorable for the removal of H2S. The compensation effect exists in nanoparticle-based catalysts.  相似文献   

7.
Catalysts using α-FeOOH nanoparticles as the active ingredient were tested by a microreactorchromatography assessing apparatus at atmospheric pressure between 25 and 60℃ with a gas hourly space velocity of 10,000h^-1,while the removal performance of H2S with catalysts was investigated using the thermal gravimetric method.The results show that the catalysts are highly active for COS hydrolysis at low temperatures(≤℃)and high gas hourly space velocity,and the highest activity can reach 100%.The catalyst is particularly stable for 12h,and no deactivation is observed.Nanoparticle α-FeOOH prepared using hydrated iron sulfate shows higher COS hydrolysis activity,and the optimum calcination temperature for the catalyst is 260℃.In addition,the catalysts can remove COS and H2S simultaneously,and 60℃ is favorable for the removal of H2S.The compensation effect exists in nanoparticle-based catalysts.  相似文献   

8.
Water-gas shift reaction catalyst at lower temperature (200—400℃) may improve the conversion of carbon monoxide. But carbonyl sulfide was found to be present over the sulfided cobalt-molybdenum/alumina catalyst for water-gas shift reaction. The influences of temperature, space velocity, and gas components on the formation of carbonyl sulfide over sulfided cobalt-molybdenum/alumina catalyst B303Q at 200—400℃were studied in a tubular fixed-bed quartz-glass reactor under simulated water-gas shift conditions. The experimental results showed that the yield of carbonyl sulfide over B303Q catalyst reached a maximum at 220℃with the increase in temperature, sharply decreased with the increase in space velocity and the content of water vapor, increased with the increase in the content of carbon monoxide and carbon dioxide, and its yield increased and then reached a stable value with the increase in the content of hydrogen and hydrogen sulfide. The formation mechanism of carbonyl sulfide over B303Q catalyst at 200—400℃was discussed on the basis of how these factors influence the formation of COS. The yield of carbonyl sulfide over B303Q catalyst at 200-400℃was the combined result of two reactions, that is, COS was first produced by the reaction of carbon monoxide with hydrogen sulfide, and then the as-produced COS was converted to hydrogen sulfide and carbon dioxide by hydrolysis. The mechanism of COS formation is assumed as follows: sulfur atoms in the Co9S8-MOS2/Al2O3 crystal lattice were easily removed and formed carbonyl sulfide with CO, and then hydrogen sulfide in the water-gas shift gas reacted with the crystal lattice oxygen atoms in CoO-MoO3/Al2O3 to form Co9S8-MoS2/Al2O3. This mechanism for the formation of COS over water-gas shift catalyst B303Q is in accordance with the Mars-Van Krevelen's redox mechanism over metal sulfide.  相似文献   

9.
The application of high temperature liquid water(HTLW) to decomposition of lignin as efficient and green solution for phenolic compounds recovery was studied.Benzyl phenyl ether(BPE),the lignin model compound,was treated at temperatures ranging from 220 to 250℃.BPE undergo hydrolysis in HTLW,and main products were phenol and benzyl alcohol with the minimum selectivities of 75.7%and 82.8%,respectively.Lower temperature led to higher selectivity in 220-250℃temperature range.The kinetics on BPE hydrolysis was studied and the activation energy was determined as 150.3±12.5 kJ/mol with the first-order kinetic equations.Based on products distribution,the reaction mechanism for decomposition of benzyl phenyl ether was proposed.The investigated process provides insights into the design of a commercial method for utilization of lignin.  相似文献   

10.
The rate determining step and the energy barrier involved in hydrogen adsorption on Pt/WO_3- ZrO_2 were studied based on the assumption that the hydrogen adsorption occurs only through Pt sites. The rate of hydrogen adsorption on Pt/WO_3-ZrO_2 was measured in the adsorption temperature range of 323-573 K and an initial hydrogen pressure of 50 Torr.The rates of hydrogen uptake were very high for the initial few minutes and the adsorption continued for more than 5 h below 523 K.The hydrogen uptake far exceeded the H/Pt ratio of unity for all adsorption temperatures,indicating that the adsorption of hydrogen involved the dissociative adsorption of hydrogen on Pt sites to form hydrogen atoms,the spillover of hydrogen atoms onto the surface of the WO_3-ZrO2 catalyst,the diffusion of spiltover hydrogen atom over the surface of the WO_3-ZrO_2 catalyst,and the formation of protonic acid site originated from hydrogen atom by releasing an electron in which the electron may react with a second hydrogen atom to form a hydride near the Lewis acid site.The rate determining step was the spillover with the activation energy of 12.3 kJ/mol.The rate of hydrogen adsorption cannot be expressed by the rate equation based on the assumption that the rate determining step is the surface diffusion.The activity of Pt/WO_3-ZrO_2 was examined on n-heptane isomerization in which the increase of hydrogen partial pressure provided positive-effect on the conversion of n-heptane and negative-effect on the selectivity towards iso-heptane.  相似文献   

11.
红外光谱法对COS水解催化剂氧中毒行为的研究   总被引:10,自引:2,他引:10  
采用一套玻璃真空系统,对COS、H2S、O2各自的吸附行为进行了研究,通过红外谱图发现COS是解离吸附,由H2S+O2的共吸附与H2S+O2+COS的共吸附结果可以看出,只有H2S与O2共存时,才会导致催化剂的失活,且导致COS水解催化剂失活的主要原因是单质硫和微量的硫酸盐沉积于催化剂的表面,温度越高,失活越严重,红外光谱得出的结果与微反得出的结果一致,并提出了失活机理。  相似文献   

12.
低温条件下二氧化碳存在时羰基硫催化水解本征动力学   总被引:6,自引:0,他引:6  
在自行设计和安装的一套微反-色谱联用装置上,以TGH为催化剂,进行了二氧化碳对羰基硫催化水解本征动力学影响的研究,得出了在低温50 ℃~70 ℃、高水汽摩尔比(H2O/COS=60~550),分别对原料气中有无存在CO2的条件下,采用非线性Marquart法对实验数据进行回归,所建立的本征动力学方程式为:  相似文献   

13.
The adsorption of carbon monoxide on an either unpromoted or potassium-promoted bulk iron catalyst was investigated at 303 K and 613 K by means of pulse chemisorption, adsorption calorimetry, temperature-programmed desorption and temperature-programmed surface reaction in hydrogen. CO was found to adsorb mainly molecularly in the absence of H(2) at 303 K, whereas the presence of H(2) induced CO dissociation at higher temperatures leading to the formation of CH(4) and H(2)O. The hydrogenation of atomic oxygen chemisorbed on metallic iron was found to occur faster than the hydrogenation of atomically adsorbed carbon. At 613 K CO adsorption occurred only dissociatively followed by recombinative CO(2) formation according to C(ads) + 2O(ads)→ CO(2(g)). The presence of the potassium promoter on the catalyst surface led to an increasing strength of the Fe-C bond both at 303 K and 613 K: the initial differential heat of molecular CO adsorption on the pure iron catalyst at 303 K amounted to 102 kJ mol(-1), whereas it increased to 110 kJ mol(-1) on the potassium-promoted sample, and the initial differential heat of dissociative CO adsorption on the unpromoted iron catalyst at 613 K amounted to 165 kJ mol(-1), which increased to 225 kJ mol(-1) in the presence of potassium. The calorimetric CO adsorption experiments also reveal a change of the energetic distribution of the CO adsorption sites present on the catalyst surface induced by the potassium promoter, which was found to block a fraction of the CO adsorption sites.  相似文献   

14.
研究了一种新型的羰基硫水解催化剂--稀土氧硫化物.考察了稀土系列氧化物硫化后的水解活性,发现其活性顺序为La≈Pr≈Nd≈Sm>Eu>Ce>Gd≈Ho>Dy>Er.XRD物相分析表明,各种稀土氧化物经水合及硫化后呈现出不同的物相变化特性,稀土氧硫化物是COS水解的活性物质.在氧硫化镧和氧硫化钕催化剂上研究了O2和SO2对羰基硫水解反应的影响,与传统的氧化铝基和氧化钛基水解催化剂相比,稀土氧硫化物显示出良好的抗氧化性能,而SO2对催化活性的影响是可逆的.  相似文献   

15.
The joint use of microcalorimetric and computational approaches has been adopted to describe H2O interaction with cus Al(III) Lewis and Si(OH)+ Al- Br?nsted acidic sites within H-BEA and H-MFI zeolites (both with approximately 6 Al/unit cell). Adsorption data obtained at 303 K were compared to experimental model systems, such as all-silica zeolites, amorphous silica, and silico-alumina, transition alumina. In parallel, ab initio molecular modeling was carried out to mimic, in a cluster approach, Lewis and Br?nsted acidic sites, as well as a variety of Si-OH species either with H-bonding interacting (nests and pairs) or isolated. H-BEA and H-MFI water affinity values were found to be almost equivalent, in both quantitative and energetic terms, in that dominated by Al-containing sites population, more than by nanocavity topology or by acidic site nature. Both H-zeolites, saturated with approximately 5 Torr of H2O vapor, bind approximately 4 H2O per Al site, almost one of which is tightly bound and not eliminated by RT pumping-off. A 160 < q(diff) < 80 kJ/mol interval was measured for the adsorption up to 1H2O/Al. The zero-coverage heat of adsorption (q0 approximately 160 kJ/mol, for both H-zeolites) was assigned to H2O/Lewis complex formation, which dominates the early stage of the process, in agreement with the ab initio computed H2O/Lewis sites binding energy. The rather broad q(diff) interval was interpreted as due to the simultaneous adsorption of H2O on both structural Br?nsted sites and strongly polarized H2O already adsorbed on Lewis sites. For this latter species, BE = 74 kJ/mol was computed, slightly higher than BE = 65 kJ/mol for H2O/Br?nsted sites interaction, showing that H2O coordinated on cus Al(III) Lewis sites behaves as a structural Br?nsted site. The investigated all-silica zeolites have been categorized as hydrophilic in that the measured heat of adsorption (100 < q(diff) < 44 kJ/mol) was larger than the heat of liquefaction of water (44 kJ/mol) in the whole coverage examined. Indeed, polar defects present in the hydrophobic Si-O-Si framework do form relatively stable H2O adducts. Crystalline versus amorphous aluminosilicate q(diff) versus n(ads) plots showed that the measured adsorption heat is lower than expected, due to the extraction work of Al atoms from the amorphous matrix to bring them in interaction with H2O. On the contrary, such an energy cost is not required for the crystalline material, in which acidic sites are already in place, as imposed by the rigidity of the framework. Modeling results supported the experimental data interpretation.  相似文献   

16.
甲苯在HCeY沸石上的脉冲反应动力学   总被引:3,自引:1,他引:2  
在2.1-3.1kg压力下,探索了在HCeY沸石催化剂上取得脉冲反应动力学数据的条件。实验结果表明,在521-568℃温度区间、30-60ml/min流速范围内,甲苯在HCeY沸石上的催化反应以脱烷基为主,近似符合一级反应动力学特征。求得表观活化能为71.5kJ/mol;吸附热34.9KJ/mol;表面反应活化能为106.4kJ/mol。  相似文献   

17.
探讨了活性白土(AAB)对油脂溶液中β-胡萝卜素的吸附热力学及动力学特征,AAB对β-胡萝卜素的吸附行为可用Langmuir和Freundlich等温式进行描述,相关性均较好,在高温条件下(75~95℃),AAB对β-胡萝卜素的吸附更符合Freundlich模型的吸附行为.分别采用拟一级反应乖拟二级反应模型描述了吸附动力学数据,表明AAB吸附β-胡萝卜素适合于拟二级吸附动力学行为,且高温有利于提高吸附量和吸附速率.AAB对β-胡萝卜素的吸附表现活化能E_a为38.673kJ/mol,表明整个吸附过程涉及到化学吸附作用;通过对吸附热力学参数△H、△S及△G的分析,表明吸附过程是自发进行且伴随着吸热及熵值的增加,吸附趋势随着温度的升高而有所增大.  相似文献   

18.
纳米α-FeOOH催化剂一段法脱除COS和H2S性能的研究   总被引:11,自引:1,他引:11  
利用均相沉淀法、氨水滴定法制备纳米α-FeOOH粒子,以该粒子为活性组分制备催化剂,利用微反-色谱联用活性评价技术,在常压、空速10 000 h-1、25 ℃~60 ℃温度范围内考察了纳米α-FeOOH催化剂对COS催化水解的活性。采用热重法对纳米α-FeOOH催化剂脱除H2S的性能进行了研究。结果表明:纳米α-FeOOH催化剂对COS水解在低温度、大空速下具有高的活性,系列Ⅰ和系列Ⅱ催化剂分别在60 ℃和40 ℃~45 ℃时COS转化率达到100%。在60 ℃时各种催化剂吸附H2S的能力最强,最高饱和硫容可达到21.72w%。催化剂表面能量分布不均匀,COS催化水解在低温时存在补偿效应。  相似文献   

19.
The detailed hydration mechanism of carbonyl sulfide (COS) in the presence of up to five water molecules has been investigated at the level of HF and MP2 with the basis set of 6-311++G(d, p). The nucleophilic addition of water molecule occurs in a concerted way across the C==S bond of COS rather than across the C==O bond. This preferential reaction mechanism could be rationalized in terms of Fukui functions for the both nucleophilic and electrophilic attacks. The activation barriers, DeltaH( not equal) (298), for the rate-determining steps of one up to five-water hydrolyses of COS across the C==S bond are 199.4, 144.4, 123.0, 115.5, and 107.9 kJ/mol in the gas phase, respectively. The most favorable hydrolysis path of COS involves a sort of eight-membered ring transition structure and other two water molecules near to the nonreactive oxygen atom but not involved in the proton transfer, suggesting that the hydrolysis of COS can be significantly mediated by the water molecule(s) and the cooperative effects of the water molecule(s) in the nonreactive region. The catalytic effect of water molecule(s) due to the alleviation of ring strain in the proton transfer process may result from the synergistic effects of rehybridization and charge reorganization from the precoordination complex to the rate-determining transition state structure induced by water molecule. The studies on the effect of temperature on the hydrolysis of COS show that the higher temperature is unfavorable for the hydrolysis of COS. PCM solvation models almost do not modify the calculated energy barriers in a significant way.  相似文献   

20.
采用热重法在常压与700℃~900℃条件下的水蒸气气化过程,对两种巴基斯坦Lakhra和Thar褐煤半焦进行了单一和混合催化剂(即3%钙和5%钠-黑液单一催化剂及一种3%钙和5%钠-黑液混合催化剂)对碳转化率、气化反应速率常数及活化能、有害污染含硫气体相对量的催化效应研究.两者Lakhra和Thar褐煤半焦经直接气化就可获得高的碳转化率,但采用纸浆黑液催化剂可使气化速率变得很快.含灰高的Thar褐煤半焦在纸浆黑液催化气化过程更易生成一些复杂的硅酸盐,从而导致比含灰低的Lakhra褐煤半焦出现一个更低的转化率.在水蒸气气化过程由半焦和纸浆黑液自身所产生的SO2 和 H2S含硫气体可为存在于纸浆黑液中的Ca盐所捕获而完成脱硫过程,但这一过程在低于900℃时更有效.缩芯模型 (SCM)可较好地用来关联转化率与时间的关系并给出不同温度下的反应速率常数k.基于阿累尼乌斯方程预测了反应活化能Ea 和指前因子A.在纸浆黑液和钙混合催化及纸浆黑液催化剂时,Lakhra褐煤半焦的Ea分别为44.7kJ/mol和 59.6kJ/mol明显小于Thar褐煤半焦的Ea=114.6kJ/mol 和 Ea=100.8kJ/mol,同样也小于无催化剂纯半焦气化时Lakhra褐煤半焦的Ea=161.2kJ/mol和Thar半焦的Ea=124.8kJ/mol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号