首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
MDF cements using the blends of sulfoaluminate ferrite belite (SAFB) clinkers and ordinary Portland cement (OPC) in mass ratio 85:15 with Al2O3, and starch, polyphosphate (poly-P) or butylacrylate/acrylonitrile were subjected to moist atmospheres (ambient, 52 and 100% relative humidity (RH)) to investigate their moisture resistance. Their chemical, thermal, electron microscopic and magnetic properties were also studied before and after moisture attack. Butylacrylate/acrylonitrile (BA/AN) copolymer was found to be the most suitable for MDF cement synthesis since the sample containing BA/AN showed the best moisture resistant. There are significant differences in scanning electron microscopy (SEM) of MDF cements before and after moisture attack and with different polymers. New data on the paramagnetic nonhysteresis magnetization curves for all the samples are observed. The MDF cements synthesized from SAFB clinker with dissolved poly-P give the best signal/noise (S/N) ratio. Three main temperature regions on TG curves of both series of MDF cements are observed. In the inter-phase section of MDF cements, the content of classical cement hydrates decomposing by 250°C is increased. Combustion of organic material took place by 550°C. In the temperature range 550-800°C, the decomposition of CaCO3 occurs.  相似文献   

2.
The system of sulfoaluminate ferrite belite (SAFB) clinkers premixed with Portland cement (PC) in mass ratio 85:15 in combination with hydroxypropylmethyl cellulose (HPMC) or polyphosphates(poly-P) was used for the syntheses of Macro-Defect-Free (MDF) materials. The subsequent moisture treatment and thermal stability of these MDF materials were investigated. The effect of individual humidity upon the evolution of mass is more intensive than the effects of composition of MDF materials or duration of the original MDF material synthesis. Detailed values of mass changes at 100% relative humidity (RH) and under ambient conditions are strongly affected by the nature of polymer used. A significant improvement of moisture resistance of MDF materials is achieved when the materials are dried after 24 h of finishing the pressure application. In the inter-phase section of MDF material samples, the content ofC-(A,F)-S hydraulic phases, mainly tetracalcium aluminate ferrite monosulphatehydrate (AFm) decomposing by 250°C and CaCO3 decomposing at 600–700°C increase after the moisture attack, while cross-links in AFm-like section with typical thermoanalytical traces in temperature region 250–550°C remain intact. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
The macro-defect-free composites belong to the well-known group of promising materials consisting of inorganic binder and organic polymer. MDF composites exhibit unusual mechanical properties, especially the flexural strength that can reach over 200 MPa. Moreover, the MDF composites based on calcium aluminate cement have a good temperature resistance because of the Al2O3 content in the cement. This paper deals with the preparation and high temperature characterization of MDF composite based on calcium aluminate cement combined with polyvinyl alcohol that could enable its utilization as a refractory material in industrial kilns. The composition of the MDF mixture has been optimized for an easy high-shear processing and flexural strength of the resulting 7-days cured material has been studied under laboratory condition and after heating at 240, 300, 600, 1,000, and 1,500 °C. The structure changes during the heating have been observed by SEM and the course of processes during the heating has been investigated by TG–DTA–EGA, TMA and heating microscopy.  相似文献   

4.
Macrodefect-free (MDF) materials are one example of “hot topics” in the field of cement-based materials and composites exerting new possibilities of the exploitation of added value. These are formed through cross-linking reactions of atoms at the interfaces of cement grains and functional polymers, when medium pressure and twin-rolling procedure are applied. The MDF-relevance of the system of Portland cement + polyphosphate is reported, together with optimal synthesis conditions and limiting rules. The chemistry knowledge about MDF materials has been shown critical for both procedure design and exploitation. Chemical shifts in both 27Al and 31P MAS NMR spectra confirm Al(6)—O—P(4) cross-linking in virgin probes and indicate secondary hydrolysis during moisture uptake in domains free of cross-links. Thermogravimetric identification of the contents of hydrated and cross-linked phases in virgin and in moisture-attacked MDF probes displays that moisture uptake is accompanied by an increase in content of cementitious hydrates and CaCO3. The key phenomena governing the moisture sensitivity/resistance are the density and compactness of interfacial Al(6)—O—P(4) cross-links vs. the access of the moist environment to the unreacted cement residue. The paper was presented at the 20 ICCBiC (International Conference on Coordination and Bioinorganic Chemistry) held on 5–10 June 2005 in Smolenice, Slovakia.  相似文献   

5.
The hydration and hardening processes of Portland cements prepared from clinkers mineralized with sodium fluoride and/or oxides (SnO2 or CuO) was studied. Type I cements (CEM I) were prepared by grinding with gypsum (5%) of clinkers obtained by the burning of an industrial raw mix with different mineralizers: sodium fluoride, oxides (CuO and SnO2) or mixtures of sodium fluoride and oxide (NaF + CuO or NaF + SnO2). The influence of foreign ions on the clinker morphology was assessed by scanning electronic microscopy (SEM) and energy dispersive X-ray spectrometry (EDX). The hydration processes of modified cements were examined by X-ray diffraction analysis (XRD) and thermal analysis techniques (TG and DTA). The main properties of the cements, i.e., flexural and compressive strengths, setting time, and soundness were also determined. A good correlation between the chemically bound water or portlandite content in pastes hydrated 2–28 days and compressive strength developed by mortars was observed. The influence of mineralizers on the kinetic of hydration processes and main properties of cements is different—0.5% NaF and 0.5% SnO2 and their mixture increase the rate of cement hydration and hardening processes, opposite to 0.5% CuO that reduce the rate.  相似文献   

6.
This research reports on the effects of including natural pozzolans in two Portland cements with different mineralogical compositions, with and without excess gypsum at amounts equivalent to 7.0% SO3. The main analytical techniques used to study these effects were: the amount of water needed to make a paste of normal consistency, the 2-day Frattini pozzolanicity test and conduction calorimetry. The results obtained showed that these natural pozzolans caused contradictory (accelerating and retarding) effects on the rheology of the resulting cements, depending on the mineralogical composition of the respective Portland clinkers as well as the reactive chemical composition of the pozzolans, in particular their reactive alumina content (Al2O3 r−). The addition of gypsum also caused acceleration and delays in the calorimetric evolution of the resulting pastes, which proved to be heavily dependent upon the more or less aluminic chemical character of the natural pozzolans studied. This, in turn, was conditioned by the higher or lower Al2O3 r− content (for the SiO2 r− content was of a very similar order of magnitude in all three pozzolans analyzed). The Al2O3 r− content was likewise responsible for paste behaviour in the afore-mentioned trials and analyses, and the pozzolanic activity exhibited by the compound was found to be more specific than generic, indirectly stimulating C3A hydration more intensely and rapidly than C3S hydration in PC1, one of the two Portland cements used. Indeed, when these natural pozzolans exhibited such prior pozzolanic activity in the second cement studied, PC2, the hydration of its 79.5% of C3S was not indirectly stimulated to the same degree; rather, the contrary effect was observed, i.e., this cement was physically diluted by the three pozzolans. Pozzolan O stimulated hydration directly and non-directly more than indirectly, while pozzolan C acted conversely, and A exhibited varying combinations of the two patterns. The physical state of the reactive alumina, Al2O3 r−, in these three natural pozzolans, must be more amorphous than vitreous, i.e., resembling metakaolin more than fly ash in this regard. That notwithstanding, the reactive alumina content in each pozzolan must have conditioned the water/cementitious material ratio obtained for the respective blends with both types of Portland cement (a finding that could be used in future for speedy, simple, reliable and economical characterization), as well as their specific pozzolanicity developed and the rate and total heat of hydration generated by such blended cements.  相似文献   

7.
MDF cements     
The applicability of MDF synthesis procedure, the coincidence of the interfacial cross-linking and the moisture resistance of MDF-related mixes based on two industrial Portland cements (CEM I, CEM II) and poly-P are reported. The knowledge of the moisture resistance of synthesized material is of paramount importance; two independent experimental methods confirmed that the moisture resistance of MDF cements based on CEM I (or CEM II) with 5% of poly-P achieves sufficient levels at 50% RH and at ambient values of RH. The results of thermal analysis are directly related to the former knowledge on the appearance and role of cross-links in the interfacial zone of MDF cements. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
The kinetics and even the mechanism of cement reaction with water can be successfully investigated by use of microcalorimetry. In this study this method was applied to follow the hydration of the new family of portland cements containing C12A7 * and C11A7·CaF2 addition as well as special cement with C3A replacement by calcium sulphoaluminate. It has been found that C11A7·CaF2 acted as hydration retarder. The heat evolution curves for C12A7 containing samples without CaF2 are very similar to those for the reference portland cement samples. XRD and SEM studies confirm the results described above, relating to the retardation of alite hydration. The process is positively modified by the addition of anhydrite. In the presence of calcium sulphoaluminate (4CaO·3Al2O3·SO3) the hydration at early stage occurs with the rapid formation of large amount of the ettringite phase. The calcium fluoride acts as a set retarder. The full compatibility of calorimetry with SEM and XRD results should be underlined. In cement chemistry the following notation is used:C=CaO,A=Al2O3,S=SiO2,H=H2O etc. for the main oxide constituents of portland cement clinker and hydrates.  相似文献   

9.
In this investigation the effect of addition of magnetite nanoparticles on the hydration characteristics of both ordinary Portland cement (OPC) and high slag cement (HSC) pastes was studied. The cement pastes were prepared using a water/solid (W/S) mass ratio of 0.3 with addition of 0.05, 0.1, and 0.3 % of magnetic fluid Fe3O4 nanoparticles by mass of cement. An aqueous stable magnetic fluid containing Fe3O4 nanoparticles, with a mean diameter in the range of super-paramagnetism, was prepared via co-precipitation method from ferrous and ferric solutions. The admixed magnetite-cement pastes were examined for compressive strength, chemically combined water content, X-ray diffraction analysis, and differential scanning calorimetry. The results of compressive strength revealed that the hardened pastes made from OPC and HSC admixed with different amounts of magnetic fluid have higher compressive strength values than those of the neat cement OPC and HSC cement pastes at almost all ages of hydration. The results of chemically combined water content for the admixed cement pastes showed almost the same general trend and nearly comparable values as those of the neat cement pastes. From the XRD diffractograms obtained for the neat OPC and HSC cement pastes, the main hydration products identified are calcium silicate hydrates, portlandite, and calcium sulfoaluminate hydrates. Addition of magnetic fluid nanoparticles to both of OPC and HSC did not affect the main hydration products of the neat OPC or HSC cement in addition to one main basic difference, namely, the formation of calcium iron hydroxide silicate as a new hydration product with a reasonable hydraulic character.  相似文献   

10.
Composites of metal-metalloid glass fibres FIB-RAFLEXTM (Fe,Cr)80(P,C,Si)20 with ordinary Portland cement (OPC) were prepared and used for an accelerated ageing procedure to study the cement paste-fibre interfaces which affect the mechanical behaviour of concrete composites. The role of the interface on the global behaviour of the concrete composite as a basis for the development of high-performance cementitious materials was studied on pulled out fibres by EDX, ESCA and by FTIR/RAMAN microspectroscopy. A Ca(OH)2 rich layer is predominant for the surface of the reinforced cementitious material and represents the interface between aggregate and matrix. The interaction between aggregate and matrix is the reason for the strength of composites with this fibre in the highly alkaline environment of hydrating cements.  相似文献   

11.
Composites of metal-metalloid glass fibres FIB-RAFLEXTM (Fe,Cr)80(P,C,Si)20 with ordinary Portland cement (OPC) were prepared and used for an accelerated ageing procedure to study the cement paste-fibre interfaces which affect the mechanical behaviour of concrete composites. The role of the interface on the global behaviour of the concrete composite as a basis for the development of high-performance cementitious materials was studied on pulled out fibres by EDX, ESCA and by FTIR/RAMAN microspectroscopy. A Ca(OH)2 rich layer is predominant for the surface of the reinforced cementitious material and represents the interface between aggregate and matrix. The interaction between aggregate and matrix is the reason for the strength of composites with this fibre in the highly alkaline environment of hydrating cements.  相似文献   

12.
This work describes the newly discovered zeolites in the eastern region of Cuba. In the researched area, there have been no previous studies of natural zeolite exploration. Therefore, the results shown here are new. The main object of this research is to analyse five samples of zeolites and demonstrate their pozzolanic capacity and the possibility of their usage in the industrial manufacturing of pozzolanic cements. The study of the samples was performed by X-ray diffraction (XRD), X-ray fluorescence (XRF) and scanning electron microscopy (SEM). A chemical analysis (CAQ) to determine the quality of the samples as pozzolans was performed, by determining the total SiO2, reactive SiO2, total CaO, reactive CaO, Al2O3, MgO and the insoluble residue (I.R.). Lastly, an eight-day pozzolanicity analysis (PA) was carried out to determine the pozzolanic reactivity of the samples. The results obtained by XRD, XRF and SEM established that the researched zeolite samples have two main zeolitic phases: mordenite and clinoptilolite. Altered volcanic glass, quartz and smectite (montmorillonite) are the secondary phases. The results of the chemical quality analysis (CAQ) showed that the samples contain a considerable amount of reactive SiO2 and reactive CaO, as well as a low content of insoluble residue, which reinforces their properties as pozzolans. The results of the pozzolanicity analysis (PA) concluded that the analysed samples actively react with Ca(OH)2 after eight days. Based on all the results mentioned above, it is established that both mordenite and clinoptilolite behave like pozzolans and can be recommended for the manufacture of pozzolanic cements, which have more effective properties than Portland cement, in terms of physical, chemical and mechanical strength, low heat of hydration, resistance to sulphates, low CO2 emissions to the atmosphere and negligible impacts on the environment.  相似文献   

13.
This article demonstrates the possibility of producing alkali-activated hybrid cements based on fly ash (FA), and construction and demolition wastes (concrete waste, COW; ceramic waste, CEW; and masonry waste, MAW) using sodium sulfate (Na2SO4) (2–6%) and sodium carbonate (Na2CO3) (5–10%) as activators. From a mixture of COW, CEW, and MAW in equal proportions (33.33%), a new precursor called CDW was generated. The precursors were mixed with ordinary Portland cement (OPC) (10–30%). Curing of the materials was performed at room temperature (25 °C). The hybrid cements activated with Na2SO4 reached compressive strengths of up to 31 MPa at 28 days of curing, and the hybrid cements activated with Na2CO3 yielded compressive strengths of up to 22 MPa. Based on their mechanical performance, the optimal mixtures were selected: FA/30OPC-4%Na2SO4, CDW/30OPC-4%Na2SO4, FA/30OPC-10%Na2CO3, and CDW/30OPC-10%Na2CO3. At prolonged ages (180 days), these mixtures reached compressive strength values similar to those reported for pastes based on 100% OPC. A notable advantage is the reduction of the heat of the reaction, which can be reduced by up to 10 times relative to that reported for the hydration of Portland cement. These results show the feasibility of manufacturing alkaline-activated hybrid cements using alternative activators with a lower environmental impact.  相似文献   

14.
The preparation of glass-ionomer cements based on the composition of SiO2–Al2O3–CaO–SrO–F and evaluation of their properties is described. Cements were prepared via the sol–gel method and characterized by XRD, BET, SEM, and EDAX analysis. The effect of various concentrations of Sr on in vitro bioactivity of the glass speciments was investigated. In vitro bioactivity of the samples was evaluated by soaking them in simulated body fluid followed by structural characterization using SEM and atomic absorption analysis. A glass specimen with 0.5 mol of Sr exhibited appropriate bioactivity.  相似文献   

15.
A two-layer film composed of a reactive element (RE) oxide (ZrO2, Y2O3, CeO2, or La2O3) and aluminum oxide (Al2O3) was prepared on the surface of Fe-18Cr alloys by an electrochemical process combined with sintering. High-resolution field emission scanning electron microscopy (FE-SEM) was used to characterize the two-layer film, which showed nanostructure. SEM, EDS and mass gain measurement were used to study the oxidation resistance of the film on Fe-18Cr alloy. It is proved that this kind of film is effective in protecting the substrate from oxidation. The results also indicated that the two-layer film possesses superior oxidation resistance than a single Al2O3 film. The mechanisms accounting for such effects have been discussed.  相似文献   

16.
本文将磷酸氢钙(CaHPO4·2H2O,DCPD)添加到硅酸三钙(Ca3SiO5,C3S)骨水泥中,采用X射线衍射(XRD),扫描电镜(SEM),万能力学测试机等手段对不同添加量的骨水泥进行表征,考察添加DCPD对硅酸三钙骨水泥性能的影响。实验表明,C3S材料中添加10% DCPD有着优于单纯C3S骨水泥的水化性能,骨水泥的初凝时间从92 min缩短到80 min;添加20%~30% DCPD能提高材料的短期力学强度,可以实现其短期抗压强度的优化;添加30%~40% DCPD的材料有着优良的生物活性与适中的可降解性能。结果表明,通过添加DCPD优化C3S水泥的性能,对各种不同性能具有DCPD添加量的依赖性。通过进一步优化DCPD添加量,将可能获得优良的生物活性骨缺陷填充材料。  相似文献   

17.
Four acrylamide polymer flocculants, anionic polyacrylamide P(AA-co-AM), cationic poly-acrylamide P(DMB-co-AM), nonionic polyacrylamide P(AM), and hydrophobical polyacry-lamide P(OA-co-AM) have been prepared by copolymerizing with acrylic acid, cationic monomer dimethylethyl (acryloxyethyl) ammonium bromide (DMB) and hydrophobical monomer octadecyl acrylate with acrylamide. The interactions between the flocculants withthe (012) surface of alumina crystal (Al2O3) have been simulated by molecular dynamics method. All the polymers can bind tightly with Al2O3 crystal, the interaction between the O of polymers and Al of the (012) surface of Al2O3 is significantly strong. The order of binding energy is as follows: P(DMB-co-AM)>P(OA-co-AM)>P(AA-co-AM)>P(AM), implying a better flocculation performance of P(DMB-co-AM) than the others. Analy-sis indicates that binding energy is mainly determined by Coulomb interaction. Bonds are found between the O atoms of the polymers and the Al atoms of Al2O3. The poly-mers' structures deform when they combine with Al2O3 crystal, but the deformation en-ergies are low and far less than non-bonding energies. Flocculation experiments in sus-pension medium of 1%Kaolin show a transmittancy of 90.8% for 6 mg/L P(DMB-co-AM) and 73.0% for P(AM). The sequence of flocculation performance of four polymers is P(DMB-co-AM)>P(OA-co-AM)>P(AA-co-AM)>P(AM), which is in excellent agreement with the simulation results of binding energy.  相似文献   

18.
Nano-sized Al2O3/polyimide (PI) hybrid films based on 4,4′-oxydianiline (ODA) and pyromellitic dianhydride (PMDA) were prepared by incorporation with different content of nano-sized Al2O3 via in situ polymerization. The TEM and SEM micrographs indicated that the Al2O3 particles were homogenously dispersed in the polyimide matrix by means of the ultrasonic treatment and the addition of coupling agent. The mechanical properties and thermal stability of the pure PI film can be improved by adequate addition of Al2O3. The PI hybrid film was strengthened and toughened simultaneously by the introduction of the well-dispersed Al2O3 particles. The PI hybrid films showed improved electrical aging performance as compared with pure PI film. Especially, the PI hybrid films with 10 wt.% of Al2O3 content exhibited obviously enhanced electrical aging performance with the time to failure of 3.4 times longer than that of pure PI film. The improved electrical aging performance of the hybrid film was attributed to the nano-sized Al2O3 particles highly dispersed in the hybrid film, which confirmed by the investigation of the morphology and the surface composition of PI hybrid film before and after electrical aging.  相似文献   

19.
The fracture behavior of acrylic bone cements modified with comonomers containing amine groups was studied using the essential work of fracture approach. The cements were prepared with either 2-(diethylamino)ethyl-acrylate (DEAEA), 2-(dimethylamino)ethyl-methacrylate (DMAEM) or 2-(diethylamino)ethyl-methacrylate (DEAEM) as comonomer in the liquid phase. Double-Edge-Notched Tensión (DENT) specimens were tested in a universal testing machine at 5 mm/min. The results showed that the essential work (we) and nonspecific value of fracture (βwp) of bone cements modified with all percentages of comonomer were notably increased compared with unmodified bone cement. From Scanning Electron Microscopy (SEM) micrographs, ductile behavior was observed for modified bone cements, i.e. the crack propagation is stable, whereas the unmodified cement exhibited brittle behavior indicating unstable crack propagation. The use of the essential work of fracture approach is suggested to determine the fracture behavior of cements that do not exhibit a linear stress-strain relationship.  相似文献   

20.
The capture of CO2 and SO2 from industrial gas effluents has been done usually by lime-containing products. For this purpose, cement pastes also can be used, due mainly to their calcium hydroxide content formed during hydration. To select the best cement for this purpose, TG and DTG curves of different Portland cement pastes (types I, II, III and G), prepared with a water-to-cement ratio (W/C) equal to 0.5, were analyzed at different ages, at same operating conditions. The curves were transformed into respective cement calcined and initial mass basis, to have a common and same composition reference basis, for a correct quantitative hydration data comparison. This procedure also shows that there is an unavoidable partial drying effect of the pastes before starting their analysis, which randomly decreases the W/C ratio at which were prepared, which indicates that, when results are compared on respective paste initial mass basis, assuming that the ratio W/C has not changed, possible calculation errors may be done. Type I, II and G analyzed cements have shown similar hydration characteristics as a function of time, while the analyzed type III cement has shown a different hydration behavior, mainly due to its highest Al2O3 and lowest SO3 contents, promoting the formation of hydrated calcium aluminates, by the pozzolanic action of the excess of alumina, consuming Ca(OH)2, which final content at 28 days was the lowest one, among the hydrated cements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号