首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A tactoid phase is obtained, which is an anisotropic mesophase dispersed in an anisotropic solution. A model is constructed that describes the shape of anisotropic regions, i.e., tactoids. It is demonstrated that the prolate shape of tactoids is caused by the competition between the elastic energy of the nematic phase and the surface energy. This model is used to find the ratio of elastic constants K3/K1 from the experimental data. It is experimentally found that a magnetic field orients and stretches tactoids. An explanation of this phenomenon is suggested.  相似文献   

2.
The dependence of the threshold parameters and the period of the electric-field-induced spatially periodic reorientation of the director in a flexoelectric nematic liquid crystal (NLC) on the anchoring conditions at the surface of a planar NLC cell has been studied. The threshold electric field and the corresponding wave-number of the periodic structure of the director field have been numerically calculated for arbitrary values of the anchoring energy. In the case of strong anchoring, the corresponding analytical expressions are obtained in a single-constant approximation. A decrease in the azimuthal anchoring energy leads to an increase in the intervals of possible values of the flexoelectric parameter ν and the ratio K2/K1 of the Frank elastic constants. A decrease in the polar anchoring energy leads to narrowing of these intervals as compared to the case of infinitely strong anchoring at the NLC cell surface.  相似文献   

3.
The dynamics of pitch jumps in cholesteric layers with a finite surface anchoring strength under variations in temperature is investigated theoretically. General expressions are presented that connect the dynamics of pitch jumps with the parameters that determine the process, such as the viscosity, the specific form of the anchoring potential, and the dimensionless parameter S d = K22/Wd, where W is the depth of the anchoring potential, K22 is the twist elastic modulus, and d is the layer thickness. It is found that the shape of the anchoring potential significantly influences the temporal behavior of the cholesteric helix in the process of a pitch jump. To illustrate this revealed dependence of the pitch jump dynamics on the shape and strength of the anchoring potential, the problem was investigated for two different models of the surface anchoring potential for a jump mechanism in connection with the director at the surface slipping over the barrier of the anchoring potential. Calculations for the unwinding (winding) of the helix in the process of the jump were performed to investigate the case of infinitely strong anchoring on one surface and finite anchoring on the other, which is important in applications. The results show that an experimental investigation of the dynamics of the pitch jumps will make it possible to distinguish different shapes of the finite strength anchoring potential and, in particular, it will provide a means for determining whether the well-known Rapini-Papoular anchoring potential is the best suited potential relevant to the dynamics of pitch jumps in cholesteric layers with a finite surface anchoring strength. The optimal conditions for experimental observation of these phenomena are briefly considered.  相似文献   

4.
It is shown that a threshold spatially periodic reorientation of the director by a light field is possible in a planar nematic liquid crystal cell if the ratio of the Frank elastic constants, K 2/K 1, exceeds a critical value. The periodic director structure arising in the cell leads to a self-diffraction of the incident light wave. The dependences obtained for this phenomenon make it possible to determine the values of the elastic constants K 1 and K 2, the director reorientation threshold, and the period of the director structure from the experimental values of the self-diffraction angle.  相似文献   

5.
A survey of available experimental data on the measurement of spin observables in neutron-proton (np) elastic scattering in the neutron energy range 200–600 MeV is presented. Sixteen spin observables (the polarization of recoil particles P 0n00, the analyzing power A 00n0, the spin correlation parameters A 00nn , A 00ss , A 00sk , and A 00kk , the spin transfer parameters K 0nn0, K 0ss0, and K 0sk0, the depolarization parameters D 0n0n , D 0s0s , and D 0s0k , and the three-spin parameters N 0nkk , N 0skn , N 0ssn , and N 0sns for energies of 200–590 MeV and scattering angles in the center of mass system of 60°–164°) were studied in experiments using polarized neutron beams and polarized proton targets at the Paul Scherrer Institute. The results of these investigations present a complete set of precision data on np elastic scattering which, along with the complete set of data for proton-proton (pp) elastic scattering obtained earlier, provides a basis for unambiguous determination of the amplitudes of the scattering matrix for nucleon-nucleon (NN) elastic scattering for the channel with the isotopic spin I = 0 and makes it possible to describe NN interaction in a model-independent way.  相似文献   

6.
Capillary instability of isothermal incompressible liquid-crystal (LC) jets is considered within the linear hydrodynamics of uniaxial nematic LCs. Free boundary conditions with strong tangential anchoring of director n at the surface are formulated in terms of the mean surface curvature ? and the Gaussian surface curvature G. The static version of the capillary instability is shown to depend on the elasticity modulus Κ, the surface tension σ0, and the radius r0 of the LC jet, expressed in terms of the characteristic parameter κ = Κ/σ0r0. The problem of the capillary instability in LC jets is solved exactly, and a dispersion relation that reflects the effect of elasticity is derived. It is shown that increase in the elasticity modulus results in decrease in both the cut-off wavenumber k and the disturbance growth rate s. This implies an enhanced stability of LC jets in comparison to ordinary liquids. In the specific case where the hydrodynamic and orientational LC modes can be decoupled, the dispersion equation is given in a closed form.  相似文献   

7.
Based on our previous study of the QCD inspired eikonalized model for describing vector meson photoproduction, pp, and \(\bar p\) p elastic scattering at high energies, we apply the mode to high energy K ± p elastic scattering. The total cross section σ tot(s), differential cross section dσ/dt, the ratio of the real part to imaginary part of the forward scattering amplitude ρ(s), and nuclear slope parameter function β(s) are calculated in the model. Our results show that the theoretical prediction for σ tot(s) is in a good agreement with the experimental data within error bars of the data. For the other theoretical predictions there are no data to test the predictive power of the model. We need the corresponding experimental data to examinate the validity of our QCD inspired eikonalized model. However, our calculations clearly show that the Odderon exchange in the process makes a significant contribution to the observable of ρ(s) and β(s). Therefore, we may conclude that there is a good opportunity to find the QCD Odderon in the K ± p elastic scattering at high energies.  相似文献   

8.
Relations between the second-order and third-order symmetry-independent elastic constants and the energy of interatomic interactions dependent on the mutual arrangement of pairs and triplets of atoms are obtained for crystals belonging to the crystal class O h. The derived relations and experimental data on the elastic constants are used to calculate four third-order elastic constants and the temperature dependence of the elastic anisotropy factor a(T) for an NaCl crystal. The calculated dependence a(T) is in qualitative agreement with the experimental dependence a exp(T).  相似文献   

9.
We present the results of the study of the energy correlators K2(n) and K3(n) and their ratio R3(n) as a function of the hadron multiplicity at the LHC. The PYTHIA generator has been used. PYTHIA predicts that R3(n) is not dependent on multiplicity. K2(n), K3(n), and the R3(n) ratio can be studied at ATLAS.  相似文献   

10.
We have described the method of analyzing and reporting on the results of calculation of the small-angle structure of radiation scattered by a polymer-dispersed liquid crystal film with electrically controlled interfacial anchoring. The method is based on the interference approximation of the wave scattering theory and the hard disk model. Scattering from an individual liquid crystal droplet has been described using the anomalous diffraction approximation extended to the case of droplets with uniform and nonuniform interface anchoring at the droplet–polymer boundary. The director field structure in an individual droplet is determined from the solution of the problem of minimizing the volume density of the free energy. The electrooptical effect of symmetry breaking in the angular distribution of scattered radiation has been analyzed. This effect means that the intensities of radiation scattered within angles +θ s and–θ s relative to the direction of illumination in the scattering plane can be different. The effect is of the interference origin and is associated with asymmetry of the phase shift of the wavefront of an incident wave from individual parts of the droplet, which appears due to asymmetry of the director field structure in the droplet, caused by nonuniform anchoring of liquid crystal molecules with the polymer on its surface. This effect is analyzed in the case of normal illumination of the film depending on the interfacial anchoring at the liquid crystal–polymer interface, the orientation of the optical axes of droplets, their concentration, sizes, anisometry, and polydispersity.  相似文献   

11.
The differential cross sections of anomalous elastic scattering of a linearly polarized x-ray photon by a neon-like Si ion in the energy range near the K-and KL 23-ionization thresholds are calculated. The calculation results are predictive.  相似文献   

12.
The temperature dependence of the surface upper critical field,H c3, nearT c is calculated for arbitrary values of the mean free pathl by taking into account the fourthorder term of the generalized Ginzburg-Landau theory. For finitel the boundary condition is modified such that the normal derivative of the energy gap at the surface becomes positive. The slope of the curveH c3/H c2 versust=T/T c att=1 is found to decrease monotoneously from zero to ?1.040 as one goes from the “dirty” to the “clean” limit.  相似文献   

13.
In the paper, a new procedure is proposed to investigate three-dimensional fracture problems of a thin elastic plate with a long through-the-thickness crack under remote uniform tensile loading. The new procedure includes a new analytical method and high accurate finite element simulations. In the part of theoretical analysis, three-dimensional Maxwell stress functions are employed in order to derive three-dimensional crack tip fields. Based on the theoretical analysis, an equation which can describe the relationship among the three-dimensional J-integral J(z), the stress intensity factor K(z) and the tri-axial stress constraint level T z (z) is derived first. In the part of finite element simulations, a fine mesh including 153360 elements is constructed to compute the stress field near the crack front, J(z) and T z (z). Numerical results show that in the plane very close to the free surface, the K field solution is still valid for in-plane stresses. Comparison with the numerical results shows that the analytical results are valid.  相似文献   

14.
The low energy gamma-rays from neutron-capture in Lu 175 and Lu 176 have been investigated by means of the bent crystal-spectrometer at the DR-3-reactor at Risø. From the transitions in Lu 177 3 rotational bands have been determined. The levels of the (404)K=7/2+ groundstate rotational band are: 121,62 keV (I=9/2), 268,79keV (I=11/2), 440,66 keV (I=13/2), 636,22 keV (I=15/2), 854,34 keV (I=17/2). The level-sequence of the (514)K=9/2?-band is: 150,39 keV (I=9/2), 288,99 keV (I=11/2), 451,49 keV (I=13/2), 637,05 keV (I=15/2) and 844,88 keV (I=17/2). At 457,92 keV is the basis for the (402)K=5/2+-band the higher levels of which are 552,05 keV (I=7/2), 671,89 keV (I=9/2), 816,63 keV (I=11/2), 985,23 keV (I=13/2), 1176,73keV (I=15/2) and probably 1389,5 keV (I=17/2). The energies of the levels apart from the 1389 keV-level have an accuracy of 7×10?5. The energy differences between the 3 bands agree very well with the values expected from the Bohr-Mottelson-formulaE=A·I(I+1)+B·I 2(I+1)2. The calculated branching-ratios within the 3 bands are in fairly good agreement with the experimental values. Theg K -factors have been determined for 2 bands: It was found that for the (514)-bandg K =1,16±0,04 and for the (402)-bandg K =1,33±0,07.  相似文献   

15.
Bond-breaking excitations ω α are the problematic case of adiabatic time-dependent density functional theory (TDDFT). The calculated ω α erroneously vanishes with the bond elongation, since the Hartree-exchange-correlation kernel and the corresponding response coupling matrix K of standard approximations lack the characteristic divergence in the dissociation limit. In this paper an approximation for K is proposed constructed from the highest-level functionals, in which both occupied and virtual Kohn-Sham orbitals participate with the weights w p . The latter provide the correct divergence of K in the limit of dissociating two-electron bond. The present K brings a decisive contribution to the energy of the 1Σ u + in the prototype H2 molecule calculated for various H-H separations. At shorter separations it improves ω α compared to the zero-order TDDFT estimate, while at the largest separation it reproduces near-saturation of the reference excitation energy.  相似文献   

16.
The decay of Xe131m was investigated in order to detect nuclear double decay processes, in which the transition energy is distributed either between twoγ-quanta or between oneγ-quantum and oneK-conversion electron or between twoK-conversion electrons. By analyzing the emittedγ-radiation in a two-dimensional way an upper limit of 2.2 · 10?5 was derived for the ratio of theγγ- toγ-transition probability. An investigation of theγ-spectrum in coincidence withK-quanta yielded an upper limit of 3 · 10?2 for the rate ofe Kγ-transitions relative toγ-transitions. The simultaneous emission of twoK-quanta was actually observed. These doubleK-quanta result either from the doubleK-conversion that was sought or from the internal conversion of the internal Compton-effect. For the doubleK-electron emission toγ-emission probability a value of (3.6±0.7) · 10?3 was obtained. TheK-conversion coefficient and the half-life of Xe131m were measured to be 32.1±0.4 and 11.94±0.04 d, respectively.  相似文献   

17.
The semiclassical approximation can be used to calculate the extrema in the energy dependence of the total cross section for collisions between neutral atoms and molecules. For this treatment, the classical deflection functionΘ(β) must be known in the region nearβ 0, where it passes smoothly through 0° (glory scattering). Numerical values forβ 0,Θ′ (β 0) andΘ′' (β 0), which determine the amplitude of the extrema, are presented for aKihara (12,6) potential for various reduced energiesK (0.01≦K≦100) and potential parameters α (?0,3≦α≦0.5).  相似文献   

18.
The “Dynamic Collective Theory” ofDanos andGreiner has been extended to spherical nuclei. For the coupling of giant resonances with surface quadrupole-vibrations a systematical theory is developed by computing the dipole-quadrupole interactionK 12 α 1 α 1)0+K 0 (α 2 α 2)0 (α 1 α 1)0+K 2 ((α 2 α 2)2 (α 1 α 1)2)0. The dipole-quadrupole hamiltonian is solved by establishing the energy matrix with the 1-dipole-many-quadrupole phonon states as a basis.  相似文献   

19.
We derive the free energy functional of a bilayer lipid membrane from the first principles of elasticity theory. The model explicitly includes position-dependent mutual slide of monolayers and bending deformation. Our free energy functional of a liquid-crystal membrane allows for incompressibility of the membrane and vanishing of the in-plane shear modulus and obeys reflectional and rotational symmetries of the flat bilayer. Interlayer slide at the midplane of the membrane results in local difference of surface densities of the monolayers. The slide amplitude directly enters the free energy via the strain tensor. For small bending deformations, the ratio between the bending modulus and the area compression coefficient, K b /K A , is proportional to the square of monolayer thickness h. Using the functional, we perform self-consistent calculation of the entropic potential acting on a bilayer between parallel confining walls separated by distance 2d. We find that at the minimum of the confining potential, the temperature-dependent curvature α ∝ T 2 /K b d4 is enhanced four times for a bilayer with slide as compared with a unit bilayer. We also calculate viscous modes of a bilayer membrane between confining walls. Pure bending of the membrane is investigated, which is decoupled from area dilation at small amplitudes. Three sources of viscous dissipation are considered: water and membrane viscosities and interlayer drag. The dispersion relation gives two branches ω1, 2 (q).  相似文献   

20.
The anisotropy of angular distributions of fission fragments and the average multiplicity of prescission neutrons were calculated within a stochastic approach to fission dynamics on the basis of three-dimensional Langevin equations. This approach was combined with a Monte Carlo algorithm for the degree of freedom K (projection of the total angular momentum I onto the fission axis). The relaxation time τ K in the coordinate K was considered as a free parameter of the model; it was estimated on the basis of a fit to experimental data on the anisotropy of angular distributions. Specifically, the relaxation time τ K was estimated at 2 × 10?21 s for the compound nuclei 224Th and 225Pa and at 4 × 10?21 s for the heavier nuclei 248Cf, 254Fm, and 264Rf. The potential energy was calculated on the basis of the liquid-drop model with allowance for finiteness of the range of nuclear forces and for the diffuseness of the nuclear surface. A modified one-body viscosity mechanism featuring a coefficient k s that takes into account the reduction of the contribution from the wall formula was used to describe collective-energy dissipation. The coefficient k s was also treated as a free parameter and was estimated at 0.5 on the basis of a fit to experimental data on the average prescission multiplicity of neutrons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号