共查询到14条相似文献,搜索用时 78 毫秒
1.
亲水性交联聚合物载体的合成及其固定化青霉素酰化酶 总被引:4,自引:0,他引:4
选用含环氧基团的甲基丙烯酸缩水甘油酯(GMA)和亲水性的N-乙烯吡咯烷酮(NVP)单体,以N,N′-亚甲基双丙烯酰胺(MBAA)为交联剂,甲酰胺作致孔剂,通过反相悬浮聚合技术成功合成了一系列大孔、珠状GMA-NVP-MBAA三元共聚物载体.N-乙烯吡咯烷酮介入共聚物体系,使共聚物载体具有较强的亲水性,有利于青霉素酰化酶的固定化.通过调节交联剂的用量和单体NVP与GMA的比例,可以调节共聚物载体的孔结构与表面性能.用合成的平均孔径为15.7nm、表面环氧基含量1.11mmol·g-1亲水性珠状载体固定青霉素酰化酶,固定化酶水解青霉素G钾盐的活性达491U·g-1;在4℃保存30d,活性保持不变.经4次使用后活性达到稳定(444U·g-1),再经14次使用后,活性没有明显变化. 相似文献
2.
6-APA合成反应中固定化青霉素酰化酶载体及固定化研究进展 总被引:4,自引:0,他引:4
青霉素酰化酶 ( penicillin amidase E.C.3.5 .1 .1 1 ,简称 PA)能催化水解青霉素产生 6-氨基青霉烷酸 ( 6- aminopenicillanic acid,简称 6- APA)、水解扩环酸产生 7-氨基 - 3-脱乙酰氧基头孢烷酸 ( 7-aminodesacetoxycephalosporanic acid,简称 7- AD-CA) .该酶还能以 6- APA或 7- ADCA为母核 ,催化合成各种不同的半合成青霉素 (如氨基苄青霉素、羟氨苄青霉素等 )或头孢菌素 .由于半合成青霉素在效力与临床价值上优于青霉素 ,而青霉素又很容易通过发酵而大量生产 ,因此近几十年来 ,有关青霉素 G水解生产 6- APA的研究一直是一个… 相似文献
3.
聚丙烯酸载体用于青霉素酰化酶的固定 总被引:2,自引:1,他引:2
以反应性单体丙烯酸和交联剂二乙烯基苯,以石油醚为致孔剂,通过悬浮聚合制备固定化酶的载体,并用于对青霉素酰化酶的固定。研究了丙烯酸与二乙烯基苯以不同摩尔比对青霉素酰化酶固定活性的影响,以及悬浮聚合时水油相比例的不同所合成的载体对固定化酶性能的影响。当丙烯酸和二乙烯基苯摩尔比为84.2:4时合成的载体固定青霉素酰化酶的酶活为2784U/g,而水油相比为2.75:1(丙烯酸和二乙烯基苯摩洋比为84.2:5)时固定青霉素酰化酶活达到2183U/g。固定青霉素酰化酶可使青霉素转化,得到半合成青霉素的中间体6-氨基青霉烷酸,由此可制成高效、广谱、服用方便的新青霉素。 相似文献
4.
高分子载体对米曲霉氨基酰化酶的固定化研究 总被引:4,自引:1,他引:4
合成了一系列不同结构的丙烯酸甲酯—二乙烯基苯交联共聚物,并用多乙烯多胺胺解制得了功能基化交联共聚物。研究了交联度、致孔剂用量和不同的功能基化试剂对这些载体固定化氨基酰化酶效果的影响。比较了固定化氨基酰化酶与溶液酶的酶学性质。用这种载体制成固定化酶柱,对N—乙酰—DL—蛋氨酸和N—乙酰—DL—苯丙氨酸进行连续拆分,得到了很好的效果。 相似文献
5.
6.
青霉素酰化酶在甲基丙烯酸缩水甘油酯共聚物上的固定化 总被引:6,自引:0,他引:6
用共价键合法将青霉素酰化酶固定化在珠状多孔的甲基丙烯酸缩水甘油酯(GM)共聚物上,研究了固定化反应时间、温度、pH值和酶液用量对固定化青霉素酰化酶的表观活性、表观偶联效率、活性回收及稳定性的影响.将GM共聚物载体加入到磷酸缓冲液(0.1mol/L,pH10.8)与青霉素酰化酶液(每克干载体用酶液1ml)的混合溶液中,在30℃下反应72h,单位质量(干重)固定化酶的表观活性为348U/g,表观偶联效率为66.7%,活性回收为31.7%. 相似文献
7.
含环氧基的交联聚合物载体的制备方法对固定化青霉素酰化酶活性的影响 总被引:5,自引:0,他引:5
以甲基丙烯酸缩水甘油酯为单体,N,N′-亚甲基双丙烯酰胺为交联剂,采用两种方法合成了大孔、珠状的交联聚合物固定化酶载体.用红外光谱、扫描电子显微镜及N2吸附等方法测定了其结构、比表面积、孔径分布和表观活性.结果表明,以液体石蜡为主介质、甲醇水溶液为致孔剂合成的聚合物GM1(60)作载体时,固定化酶水解青霉素G的活性达537U/g;以正庚烷与四氯乙烯混合溶剂为介质、甲酰胺为致孔剂合成的聚合物GM2(60)作载体时,固定化酶的活性较低,为426U/g.在37℃下连续进行10次间歇操作(每次反应10min)后,前者活性降至487U/g,保持了初始活性的90.7%;后者活性降至378U/g,保持了初始活性的88.7%.二者催化活性的不同是由于两种方法制备的载体在结构与性能上存在着明显的差异.GM1(60)载体孔径大,水中溶胀性能好,对青霉素酰化酶的偶联作用强,固定化效果显著. 相似文献
8.
含环氧基团的聚合物载体合成方法的改进及其固定化青霉素酰化酶 总被引:1,自引:0,他引:1
以 Span-60 和 Tween-20 为复合分散剂, 以 N,N′-亚甲基双丙烯酰胺为交联剂, 以甲基丙烯酸缩水甘油酯和烯丙基缩水甘油醚为功能性单体, 用反相悬浮聚合技术成功制备了含环氧基团的聚合物载体, 并用红外光谱和低温氮吸附对聚合物载体进行了表征. 以 Span-60 和 Tween-20 为复合分散剂, 替代原有的 Span-60 和硬脂酸钙复合分散剂, 大幅度减少了后处理过程中所需的时间和溶剂用量, 使固定化青霉素酰化酶的活性从 215 U/g 提高到 320 U/g. 与游离酶相比, 该固定化酶具有较好的操作稳定性, 在 pH = 5~11 和不高于 50 oC 的环境中具有较好的稳定性. 固定化酶的水解反应动力学过程与游离酶相同, 均遵循米氏反应动力学, 而且活性与底物浓度密切相关. 当底物浓度为 6.5% 时, 固定化酶的活性最高, 达到 353 U/g. 相似文献
9.
固定化青霉素酰化酶新型载体PEI/SiO2的制备及其特性 总被引:5,自引:0,他引:5
通过γ-氯丙基三甲氧基硅烷的媒介, 将聚乙烯亚胺(PEI)化学偶联在硅胶微粒表面, 制备了固定化青霉素酰化酶的新型复合载体PEI/SiO2, 最终制得了活性高且稳定性好的固定化青霉素酰化酶. 通过测定复合载体表面PEI的偶合量, 考察了各种反应条件对复合载体制备的影响规律; 通过红外光谱与电导滴定法测定, 对复合载体表面的化学结构与组成进行了表征; 为探索复合载体PEI/SiO2固定化酶的作用机理, 测定了复合载体在固定化酶前的ζ电位. 研究结果表明, 通过氯丙基硅烷偶联剂的媒介, 聚胺大分子PEI可以充分地被化学偶联在SiO2表面, 键合量可达到15%. 偶联反应的适宜条件: 反应温度90-94 ℃; 反应时间5h; PEI的质量浓度0.45-0.50 g/mL. 由于PEI分子链中含有大量氨基, 少量的共价键联与大量的物理吸附相结合, 既可使青霉素酰化酶被快速稳定地固定化, 又能很好地保持酶的构象, 使其具有较高的催化活性与活力回收率, 而且具有良好的连续操作稳定性, 重复使用15次, 固定化酶的活性可稳定地保持在初活性的87.5%水平上. 相似文献
10.
11.
微波辐射高效共价固定青霉素酰化酶 总被引:1,自引:0,他引:1
为提高青霉素酰化酶的共价固定化效率, 在微波辐射条件下将酶蛋白共价固定于介孔泡沫硅(MCFs)的孔道中. 通过正硅酸四乙酯水解缩合制备介孔泡沫硅, 再于微波辅助下将青霉素酰化酶共价固定在其孔道中. 以固定化酶相对活力和活力回收为指标, 考察了加酶量、固定化温度、微波辐射时间等条件对酶固定化效率的影响. 实验结果表明: 当加酶量为60 mg/g, 固定化温度为20 ℃, 微波辐射140 s, 固定化酶相对活力达到178.1%, 表观活力为1191.3 U/g(以湿重计). 与常规方法相比, 微波辅助固定化酶时, 固定化酶相对活力提高34.5%, 固定化时间亦大幅缩短至数分钟, 这为青霉素酰化酶的高效共价固定化提供了一条新的途径. 相似文献
12.
RENLing-ling HEJing EvansD.G. DUANXue 《高等学校化学研究》2003,19(3):324-329
A hydrotalcite-like Mg2 /Al3 layered double hydroxide (LDH) material was prepared by means of amodified coprecipitation method involving a rapid mixing step followed by a separate aging process. LDH calcined at 500℃ , denoted as CLDH, was characterized by XRD, IR and BET surface area measurements.CLDH has a poor crystalline MgO-like structure with a high surface area and porosity. CLDH was used as asupport for the immobilization of penicillin G acylase(PGA). The effect of varying the immobilization conditions, such as pH, contact time and the ratio of enzyme to support, on the activity of the immobilized enzymein the hydrolysis of penicillin G has been studied. It was found that the activity of the immobilized enzyme decreased slightly with decreasing pH and reached a maximum after a contact time of 24 h. The activity of theimmobilized enzyme increased with increasing the ratio of enzyme to support. It was found that the adsorption of PGA inhibited the expected reaction of CLDH with an aqueous medium to regenerate a LDH phase. Itsoriginal activity(36%) after 15 cycles of reuse of the immobilized enzyme was retained, but no further loss in the activity was observed. 相似文献
13.
介孔材料的修饰及固定青霉素酰化酶的稳定性研究 总被引:4,自引:0,他引:4
利用扩孔剂的作用合成出较大孔径(12 nm)的介孔材料SBA-15, 并进行表面氨基修饰, 以此为载体, 以戊二醛为交联剂, 对青霉素酰化酶进行组装固定, 并对固定化青霉素酰化酶(PGA)的稳定性进行了深入的研究. 实验结果表明, PGA与载体交联后仍保持活性. 热稳定性研究结果表明, 制备的固定化青霉素酰化酶在低于60 ℃时保持稳定; pH在6~11范围内保持稳定; 固定化酶重复使用10次之后, 仍具有高达90%的残留活力. 相似文献
14.
An approach to stable covalent immobilization of chemically modified penicillin G acylase from Escherichia coli on Sepabeads® carriers with high retention of hydrolytic activity and thermal stability is presented. The two amino-activated polymethacrylate particulate polymers with different spacer lengths used in the study were Sepabeads® EC EA and Sepabeads® EC HA. The enzyme was first modified by cross-linking with polyaldehyde derivatives of starch in order to provide it with new useful functions. Such modified enzyme was then covalently immobilized on amino supports. The method seems to provide a possibility to couple the enzyme without risking a reaction at the active site which might cause the loss of activity. Performances of these immobilized biocatalysts were compared with those obtained by the conventional method with respect to activity and thermal stability. The thermal stability study shows that starch-PGA immobilized on Sepabeads EC-EA was almost 4.5-fold more stable than the conventionally immobilized one and 7-fold more stable than free non-modified PGA. Similarly, starch-PGA immobilized on Sepabeads EC-HA was around 1.5- fold more stable than the conventionally immobilized one and almost 9.5-fold more stable than free non-modified enzyme. 相似文献