首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We introduce the notion of almost expansive sequences and curves and study their ergodic and asymptotic properties in a Hilbert space H. We apply our results to study the asymptotic behavior of solutions to the quasi-autonomous expansive type evolution system (du/dt)(t) + f(t) ∈ Au(t) on [0, ∞).  相似文献   

2.
The existence and linear stability problem for the Stokes periodic wavetrain on fluids of finite depth is formulated in terms of the spatial and temporal Hamiltonian structure of the water-wave problem. A proof, within the Hamiltonian framework, of instability of the Stokes periodic wavetrain is presented. A Hamiltonian center-manifold analysis reduces the linear stability problem to an ordinary differential eigenvalue problem on ℝ4. A projection of the reduced stability problem onto the tangent space of the 2-manifold of periodic Stokes waves is used to prove the existence of a dispersion relation Λ(λ,σ, I 1, I 2)=0 where λ ε ℂ is the stability exponent for the Stokes wave with amplitude I 1 and mass flux I 2 and σ is the “sideband’ or spatial exponent. A rigorous analysis of the dispersion relation proves the result, first discovered in the 1960's, that the Stokes gravity wavetrain of sufficiently small amplitude is unstable for F ε (0,F0) where F 0 ≈ 0.8 and F is the Froude number.  相似文献   

3.
We prove the asymptotic stability of two-state nonplanar Riemann solutions for a class of multidimensional hyperbolic systems of conservation laws when the initial data are perturbed and viscosity is added. The class considered here is those systems whose flux functions in different directions share a common complete system of Riemann invariants, the level surfaces of which are hyperplanes. In particular, we obtain the uniqueness of the self-similar L entropy solution of the two-state nonplanar Riemann problem. The asymptotic stability to which the main result refers is in the sense of the convergence as t→∞ in Lloc1 of the space of directions ξ = x/t. That is, the solution u(t, x) of the perturbed problem satisfies u(t, tξ)→R(ξ) as t→∞, in Lloc1(ℝn), where R(ξ) is the self-similar entropy solution of the corresponding two-state nonplanar Riemann problem.  相似文献   

4.
The often used “Boussinesq equations” for the determination of the coupled flow and temperature field in natural convection are systematically deduced by an asymptotic approach. With the nondimensional temperature difference that drives the flow, ?, as a perturbation parameter the leading order equations are identified as the appropriate equations, named “asymptotic Boussinesq equations”. These equations appear as the distinguished limit $\varepsilon\rightarrow0The often used “Boussinesq equations” for the determination of the coupled flow and temperature field in natural convection are systematically deduced by an asymptotic approach. With the nondimensional temperature difference that drives the flow, ɛ, as a perturbation parameter the leading order equations are identified as the appropriate equations, named “asymptotic Boussinesq equations”. These equations appear as the distinguished limit e?0\varepsilon\rightarrow0 and Ec? 0{Ec}\rightarrow 0 with Ec/e = const.{Ec}/\varepsilon =const. The equations are compared to “Boussinesq equations” of other studies and used to calculate Nusselt numbers in laminar and turbulent flows in infinite vertical channels as an example and for the justification of the asymptotic approach.  相似文献   

5.
 In this paper, the problem of laminar free convection from a vertical permeable circular cone maintained with non-uniform surface heat flux is considered. The governing boundary layer equations are reduced non-similar boundary layer equations with surface heat flux proportional to x n (where x is the distance measured from the leading edge). The solutions of the reduced equations are obtained by using three distinct solution methodologies; namely, (i) perturbation solution for small transpiration parameter, ξ, (ii) asymptotic solution for large ξ, and (iii) the finite difference solutions for all ξ. The solutions are presented in terms of local skin-friction and local Nusselt number for smaller values of Prandtl number and heat flux gradient and are displayed in tabular form as well as graphically. Effects of pertinent parameters on velocity and temperature profiles are also shown graphically. Solutions obtained by finite difference method are also compared with the perturbation solutions for small and large ξ and found to be in excellent agreement. Received on 1 October 1999  相似文献   

6.
The Dafermos regularization of a system of n conservation laws in one space dimension admits smooth self-similar solutions of the form u=u(X/T). In particular, there are such solutions near a Riemann solution consisting of n possibly large Lax shocks. In Lin and Schecter (2004, SIAM. J. Math. Anal. 35, 884–921), eigenvalues and eigenfunctions of the linearized Dafermos operator at such a solution were studied using asymptotic expansions. Here we show that the asymptotic expansions correspond to true eigenvalue–eigenfunction pairs. The proofs use geometric singular perturbation theory, in particular an extension of the Exchange Lemma.  相似文献   

7.
This paper uses a variational approach to establish existence of solutions (σ t , v t ) for the 1-d Euler–Poisson system by minimizing an action. We assume that the initial and terminal points σ 0, σ T are prescribed in , the set of Borel probability measures on the real line, of finite second-order moments. We show existence of a unique minimizer of the action when the time interval [0,T] satisfies T < π. These solutions conserve the Hamiltonian and they yield a path tσ t in . When σ t  = δ y(t) is a Dirac mass, the Euler–Poisson system reduces to . The kinetic version of the Euler–Poisson, that is the Vlasov–Poisson system was studied in Ambrosio and Gangbo (Comm Pure Appl Math, to appear) as a Hamiltonian system. WG gratefully acknowledges the support provided by NSF grants DMS-02-00267, DMS-03-54729 and DMS-06-00791. TN gratefully acknowledges the postdoctoral support provided by NSF grants DMS-03- 54729 and the School of Mathematics. AT gratefully acknowledges the support provided by the School of Mathematics.  相似文献   

8.
The Dafermos regularization of a system of n hyperbolic conservation laws in one space dimension has, near a Riemann solution consisting of n Lax shock waves, a self-similar solution u = u ε(X/T). In Lin and Schecter (2003, SIAM J. Math. Anal. 35, 884–921) it is shown that the linearized Dafermos operator at such a solution may have two kinds of eigenvalues: fast eigenvalues of order 1/ε and slow eigenvalues of order one. The fast eigenvalues represent motion in an initial time layer, where near the shock waves solutions quickly converge to traveling-wave-like motion. The slow eigenvalues represent motion after the initial time layer, where motion between the shock waves is dominant. In this paper we use tools from dynamical systems and singular perturbation theory to study the slow eigenvalues. We show how to construct asymptotic expansions of eigenvalue-eigenfunction pairs to any order in ε. We also prove the existence of true eigenvalue-eigenfunction pairs near the asymptotic expansions.  相似文献   

9.
We consider a mixed boundary-value problem for a Poisson equation in a plane two-level junction Ωε that is the union of a domain Ω0 and a large number 3N of thin rods with thickness of order . The thin rods are divided into two levels depending on their length. In addition, the thin rods from each level are ε-periodically alternated. The homogeneous Dirichlet conditions and inhomogeneous Neumann conditions are given on the sides of the thin rods from the first level and the second level, respectively. Using the method of matched asymptotic expansions and special junction-layer solutions, we construct an asymptotic approximation for the solution and prove the corresponding estimates in the Sobolev space H 1ε) as ε → 0 (N → +∞). Published in Neliniini Kolyvannya, Vol. 9, No. 3, pp. 336–355, July–September, 2006.  相似文献   

10.
This work is devoted to the study of steady thermocapillary-buoyant convection in a system of two horizontal superimposed immiscible liquid layers filling a lateral heated thin annular pool.The governing equations are solved using an asymptotic theory for the aspect ratios ε→ 0.Asymptotic solutions of the velocity and temperature fields are obtained in the core region away from the cylinder walls.In order to validate the asymptotic solutions,numerical simulations are also carried out and the results are compared to each other.It is found that the present asymptotic solutions are valid in most of the core region.And the applicability of the obtained asymptotic solutions decreases with the increase of the aspect ratio and the thickness ratio of the two layers.For a system of gallium arsenide (lower layer) and boron oxide (upper layer),the buoyancy slightly weakens the thermocapillary convection in the upper layer and strengthens it in the lower layer.  相似文献   

11.
Natural convection in a fluid saturated porous medium has been numerically investigated using a generalized non-Darcy approach. The governing equations are solved by using Finite Volume approach. First order upwind scheme is employed for convective formulation and SIMPLE algorithm for pressure velocity coupling. Numerical results are presented to study the influence of parameters such as Rayleigh number (106 ≤Ra ≤108), Darcy number (10−5Da ≤ 10−2), porosity (0.4 ≤ ɛ ≤ 0.9) and Prandtl number (0.01 ≤ Pr ≤ 10) on the flow behavior and heat transfer. By combining the method of matched asymptotic expansions with computational fluid dynamics (CFD), so called asymptotic computational fluid dynamics (ACFD) technique has been employed to generate correlation for average Nusselt number. The technique is found to be an attractive option for generating correlation and also in the analysis of natural convection in porous medium over a fairly wide range of parameters with fewer simulations for numerical solutions.  相似文献   

12.
We estimate the time decay rates in L 1, in the Hardy space and in L of the gradient of solutions for the Stokes equations on the half spaces. For the estimates in the Hardy space we adopt the ideas in [7], and also use the heat kernel and the solution formula for the Stokes equations. We also estimate the temporal-spatial asymptotic estimates in L q , 1 < q < ∞, for the Stokes solutions. This work was supported by grant No. (R05-2002-000-00002-0(2002)) from the Basic Research Program of the Korea Science & Engineering Foundation.  相似文献   

13.
An infinite elastic band is compressed along its unbounded direction, giving rise to a continuous family of homogeneous configurations that is parameterized by the compression rate β < 1 (β = 1 when there is no compression). It is assumed that, for some critical value β 0, the compression force as a function of β has a strict local extremum and that the linearized equation around the corresponding homogeneous configuration is strongly elliptic. Under these conditions, there are nearby localized deformations that are asymptotically homogeneous. When the compression force reaches a strict local maximum at β 0, they describe localized thickening and they occur for values of β slightly smaller than β 0. Since the material is supposed to be hyperelastic, homogeneous and isotropic, the localized deformations are not due to localized imperfections. The method follows the one developed by A. Mielke for an elastic band under traction: interpretation of the nonlinear elliptic system as an infinite dimensional dynamical system in which the unbounded direction plays the role of time, its reduction to a center manifold and the existence of a homoclinic solution to the reduced finite dimensional problem in [A. Mielke, Hamiltonian and Lagrangian fiows on center manifolds, Lecture Notes in Mathematics 1489. Springer, Berlin Heidelberg New York, 1991]. The main difference lies in the fact that Agmon's condition does not hold anymore and therefore the linearized problem cannot be analyzed as in Mielke's work.  相似文献   

14.
We consider the three-dimensional flow through an aperture in a plane either with a prescribed flux or pressure drop condition. We discuss the existence and uniqueness of solutions for small data in weighted spaces and derive their complete asymptotic behaviour at infinity. Moreover, we show that each solution with a bounded Dirichlet integral, which has a certain weak additional decay, behaves like O(r −2) as r=|x|→∞ and admits a wide jet region. These investigations are based on the solvability properties of the linear Stokes system in a half space ℝ + 3 . To investigate the Stokes problem in ℝ + 3 , we apply the Mellin transform technique and reduce the Stokes problem to the determination of the spectrum of the corresponding invariant Stokes-Beltrami operator on the hemisphere.  相似文献   

15.
A high order of asymptotic solution of the singular fields near the tip of a mode III interface crack for pure power-law hardening bimaterials is obtained by using the hodograph transformation. It is found that the zero order of the asymptotic solution corresponds to the assumption of a rigid substrate at the interface, and the first order of it is deduced in order to satisfy completely two continuity conditions of the stress and displacement across the interface in the asymptotic sense. The singularities of stress and strain of the zeroth order asymptotic solutions are −1/(n 1+1) and −n/(n 1+1) respectively. (n=n 1,n 2 is the hardening exponent of the bimaterials.) The applicability conditions of the asymptotic solutions are determined for both zeroth and first orders. It is proved that the Guo-Keer solution[10] is limited in some conditions. The angular functions of the singular fields for this interface crack problem are first expressed by closed form. The project supported by National Natural Science Foundation of China  相似文献   

16.
The evolution of energies and fluxes in homogeneous turbulence with baroclinic instability is analyzed using the linear theory. The mean flow corresponds to a vertical shear having a uniform mean velocity gradient, ?U i /?x j  = S δ i1 δ j3, a system rotation about the vertical axis with rate Ω, Ω i  = Ωδ i3, and uniform buoyancy gradients in the spanwise ${(\partial B{/}\partial x_2\,{=}\, N_h^2\,{=}\,-2\Omega S)}The evolution of energies and fluxes in homogeneous turbulence with baroclinic instability is analyzed using the linear theory. The mean flow corresponds to a vertical shear having a uniform mean velocity gradient, ∂U i /∂x j  = S δ i1 δ j3, a system rotation about the vertical axis with rate Ω, Ω i  = Ωδ i3, and uniform buoyancy gradients in the spanwise (?B/?x2 = Nh2 = -2WS){(\partial B{/}\partial x_2\,{=}\, N_h^2\,{=}\,-2\Omega S)} and vertical (?B/?x3 = Nv2){(\partial B{/}\partial x_3\,{=}\,N_v^2)} directions. Computations based on the rapid distortion theory (RDT) are performed for several values of the rotation number R = 2Ω/S and the Richardson number Ri = Nv2/S2 < 1{R_i\,{=}\,N_v^2/S^2 <1 }. It is shown that, during an initial phase, the energies and the buoyancy fluxes are sensitive to the effects of pressure and viscosity. At large time, the ratios of energies, as well as the normalized fluxes, evolve to an asymptotically constant value, while the pressure–strain correlation scaled with the product of the turbulent kinetic energy by the shear rate approaches zero. Accordingly, an analytical parametric study based on the “pressure-less” approach (PLA) is also presented. The analytical study indicates that, when R i  < 1, there is an exponential instability and equilibrium states of turbulence, in agreement with RDT. The energies and the buoyancy fluxes grow exponentially for large times with the same rate (γ in St units). The asymptotic value of the ratios of energies yielded by RDT is well described by its PLA counterpart derived analytically. At R i  = 0, the asymptotic value of γ increases with increasing R approaching 2 for high rotation rates. At low rotation rates, an important contribution to the kinetic energy comes from the streamwise kinetic energy, whereas, at high rotation rates, the contribution of the vertical kinetic energy is dominant. When 0 < R i  < 1 and R 1 0{R\ne 0}, the asymptotic value of γ decreases as R i increases so as it becomes zero at R i  = 1.  相似文献   

17.
The problem of robust global stabilization by nonlinear boundary feedback control for the Korteweg–de Vries–Burgers equation on the domain [0,1] is considered. The main purpose of this paper is to derive nonlinear robust boundary control laws which make the system robustly globally asymptotically stable in spite of uncertainty in the system parameters. Furthermore, we show that the proposed boundary controllers guarantee L 2-robust exponential stability, L -robust asymptotic stability and boundedness in terms of both L 2 and L .  相似文献   

18.
In this paper, a non-isobaric Marangoni boundary layer flow that can be formed along the interface of immiscible nanofluids in surface driven flows due to an imposed temperature gradient, is considered. The solution is determined using a similarity solution for both the momentum and energy equations and assuming developing boundary layer flow along the interface of the immiscible nanofluids. The resulting system of nonlinear ordinary differential equations is solved numerically using the shooting method along with the Runge-Kutta-Fehlberg method. Numerical results are obtained for the interface velocity, the surface temperature gradient as well as the velocity and temperature profiles for some values of the governing parameters, namely the nanoparticle volume fraction φ (0≤φ≤0.2) and the constant exponent β. Three different types of nanoparticles, namely Cu, Al2O3 and TiO2 are considered by using water-based fluid with Prandtl number Pr =6.2. It was found that nanoparticles with low thermal conductivity, TiO2, have better enhancement on heat transfer compared to Al2O3 and Cu. The results also indicate that dual solutions exist when β<0.5. The paper complements also the work by Golia and Viviani (Meccanica 21:200–204, 1986) concerning the dual solutions in the case of adverse pressure gradient.  相似文献   

19.
The temperature profile in a circular tube of infinite extent through which a fluid is moving under conditions of small Péclet numbersε is determined by means of an asymptotic analysis inε. The walls of the tube are heated forx>0 and are insulated whenx<0. It is shown that the heated region extends anO(ε −1) distance — relative to the radius of the tube — upstream of the pointx=0, and that convective effects remain important even whenε→0. These results apply to a wider class of problems in which the Péclet number is small.  相似文献   

20.
In this paper we consider a five-parameter family of planar vector fields where μ = (μ 1, μ 2, μ 3, μ 4, μ 5), which is a small parameter vector, and c(0) ≠ 0. The family X μ represents the generic unfolding of a class of nilpotent cusp of codimension five. We discuss the local bifurcations of X μ, which exhibits numerous kinds of bifurcation phenomena including Bogdanov-Takens bifurcations of codimension four in Li and Rousseau (J. Differ. Eq. 79, 132–167, 1989) and Dumortier and Fiddelaers (In: Global analysis of dynamical systems, 2001), and Bogdanov-Takens bifurcations of codimension three in Dumortier et al. (Ergodic Theory Dynam. Syst. 7, 375–413, 1987) and Dumortier et al. (Bifurcations of planar vector fields. Nilpotent singularities and Abelian integrals, 1991). After making some rescalings, we obtain the truncated systems of X μ . For a truncated system, all possible bifurcation sets and related phase portraits are obtained. When the truncated system is a Hamiltonian system, the bifurcation diagram and the related phase portraits are given too. Hopf bifurcations are studied for another truncated system. And it shows that the system has the Hopf bifurcations of codimension at most three, and at most three limit cycles occur in the small neighborhood of the Hopf singularity. Dedicated to Professor Zhifen Zhang in the occasion of her 80th birthday  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号