首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Electroanalysis》2017,29(9):2090-2097
Lignosulfonate‐stabilized gold nanoparticles (AuNPs‐LS) were synthesized and subsequently used as a complexing agent for mercury ions. The obtained AuNPs‐LS/Hg2+ complex was characterized by means of various physicochemical techniques such as UV‐vis spectroscopy, transmission electron microscopy and cyclic voltammetry. Furthermore, the resulting complex was evaluated as an electrode modifier for the development of amperometric sensors. Upon sufficient negative potential, the bound mercury ions are reduced to form an amalgam with AuNPs‐LS. Thus, the performance of glassy carbon electrode (GCE) modified by AuNPs‐LS/Hg film was investigated as an electrochemical sensor in the determination of Tl+ ions in a 0.05 M EDTA at pH 4.5. The presence of the mercury containing film improves the analyte accumulation due to its ability to form a fused amalgam with thallium. The presented data indicate that the GCE/AuNPs‐LS/Hg modified electrode shows better performance toward Tl+ determination in comparison to bare GCE. The stripping anodic peak current of thallium was linear over its concentration range from 1.7⋅10−7 to 5.0⋅10−6 M. The detection limit (3σ) was estimated to be 1.4⋅10−7 M. The proposed method was successfully applied for the determination of thallium ions in real samples of soil derived from the area of the copper smelter near Głogów (Poland).  相似文献   

2.
A procedure for the determination of the contaminant metal In(III) by differential pulse adsorptive stripping voltammetry (DPAdSV) using ammonium pyrrolidine dithiocarbamate (APDC) as a complexing agent, has been optimized. The selection of the experimental conditions was made using experimental design methodology by means of a robust regression method which allows the elimination of anomalous points. The detection limit obtained was 1.3×10−9 mol dm−3. Possible interferences from concomitant metal ions were evaluated. Among all the metals analyzed, only Cd(II) was found to create an interference. This fact made impossible to carry out the determination of In(III) in the presence of Cd(II) using a univariate calibration. This problem was solved using multivariate regression techniques such as partial least squares (PLS). The procedure was successfully applied to the determination of indium in different aqueous samples.  相似文献   

3.
Evaluation of different solid electrode systems for detection of zinc, lead, cobalt, and nickel in process water from metallurgical nickel industry with use of differential pulse stripping voltammetry has been performed. Zinc was detected by differential pulse anodic stripping voltammetry (DPASV) on a dental amalgam electrode as intermetallic Ni–Zn compound after dilution in ammonium buffer solution. The intermetallic compound was observed at –375 mV, and a linear response was found in the range 0.2–1.2 mg L–1 (r2=0.98) for 60 s deposition time. Simultaneous detection of nickel and cobalt in the low g L–1 range was successfully performed by use of adsorptive cathodic stripping voltammetry (AdCSV) of dimethylglyoxime complexes on a silver–bismuth alloy electrode, and a good correlation was found with corresponding AAS results (r2=0.999 for nickel and 0.965 for cobalt). Analyses of lead in the g L–1 range in nickel-plating solution were performed with good sensitivity and stability by DPASV, using a working electrode of silver together with a glassy carbon counter electrode in samples diluted 1:3 with distilled water and acidified with H2SO4 to pH 2. A new commercial automatic at-line system was tested, and the results were found to be in agreement with an older mercury drop system. The stability of the solid electrode systems was found to be from one to several days without any maintenance needed.  相似文献   

4.
A critical comparison of phase-selective fundamental harmonic a.c. anodic stripping voltammetry and differential pulse anodic stripping voltammetry for the determination of Pb, Cd, Cu and Zn in sea-water is reported. Differential pulse anodic stripping voltammetry was found to be slightly more sensitive than the a.c. technique, but the effect of the charging current could be more effectively eliminated by the latter, especially in the determination of zinc(II) and copper(II). The detection limits for both techniques were found to be about 10–10-10–8 M for all four elements. The precision, expressed as relative standard deviation, was of the order of 2–5% for the fundamental harmonic a.c. method and 5–8% for differential pulse voltammetry. The accuracy (expressed as recovery) was 95–105% for the former and 90–110% for the latter.  相似文献   

5.
Cathodic stripping methods are described for the determination of traces of thiocyanate ions down to 2 × 10-8 mol l-1 and Cu(II) ions down to 1 × 10-8 mol l-1. The method involves electrolytic accumulation of copper(I) thiocyanate on the surface of a hanging mercury drop electrode followed by stripping of the deposit during the cathodic scan. For the determination of thiocyanate, a copper amalgam electrode can be used. Examples of application of the method for the determination of traces of thiocyanate in common salts, in saliva and urine as well as for the determination of copper(II) ions in tap water are described.  相似文献   

6.
The adsorption behavior and differential pulse cathodic adsorptive stripping voltammetry of the pesticide Chlorpyrifos (CP) were investigated at the hanging mercury drop electrode (HMDE). The pesticide was accumulated at the HMDE and a well-defined stripping peak was obtained at –1.2 V vs Ag/AgCl electrode at pH 7.50. A voltammetric procedure was developed for the trace determination of Chlorpyrifos using differential pulse cathodic adsorptive stripping voltammetry (DP-CASV). The optimum working conditions for the determination of the compound were established. The peak current was linear over the concentration range 9.90 × 10–8– 5.96 × 10–7 mol/L of Chlorpyrifos. The influence of diverse ions and some other pesticides was investigated. The analysis of Chlorpyrifos in commercial formulations and treated waste water was carried out satisfactorily Received: 10 July 1997 / Revised: 1 April 1998 / Accepted: 6 April 1998  相似文献   

7.
Zinc speciation is considered to be an important determinant of the biological availability of zinc. Yet in oceanic surface waters, characterization of zinc speciation is difficult due to the low concentrations of this essential micronutrient. In this study, an anodic stripping voltammetry method previously developed for the total determination of cadmium and lead was successfully adapted to the measurement of zinc speciation. The method differs from previous zinc speciation anodic stripping voltammetry methods in that a fresh mercury film is plated with each sample aliquot. The fresh film anodic stripping voltammetry method was compared to competitive ligand exchange cathodic stripping voltammetry in a profile from the North Atlantic Ocean. Results using the fresh film anodic stripping voltammetry method were similar to those determined using the cathodic stripping voltammetry method, though ligand concentrations determined by fresh film anodic stripping voltammetry were generally slightly higher than those determined by cathodic stripping voltammetry. There did not seem to be a systematic difference between methods for the estimates of conditional stability constants. The ligand concentration in the North Atlantic profile ranged from 0.9 to 1.5 nmol L−1 as determined by fresh film anodic stripping voltammetry and 0.6 to 1.3 nmol L−1 as determined by cathodic stripping voltammetry. The conditional stability constants determined by fresh film anodic stripping voltammetry were 109.8-1010.5 and by cathodic stripping voltammetry were 109.8-1011.3.  相似文献   

8.
《Analytical letters》2012,45(15):2743-2753
Abstract

The electrochemical behavior of 6-MP was studied by cyclic voltammetry at a hanging copper amalgam dropping electrode (HCADE). It was found that 6-MP could form a complex with the Cu(II) stripped from the HCADE, showing a new peak at ?0.19V in the medium of 0.1mol/L LiClO4-0.5mol/L HClO4 solution. The mechanism of the reaction was proposed. This new peak was sensitive and could be used for the determination of trace 6-MP by differential pulse adsorption cathodic stripping voltammetry (DPAdCSV). The linear range was from 3.6×10?10 to 5.3×10?6 mol/L, and the detection limit was about 1.2×10?10 mol/L (S/N=3). The method was also successfully applied to the determination of 6-MP in pharmaceutical tablets.  相似文献   

9.
《Analytical letters》2012,45(8):1409-1424
Abstract

Differential pulse adsorptive stripping voltammetry using dimethylglyoxime complexes in the presence of triethanolamine and ammonium chloride can be applied to the determination of cobalt (II) ions in natural waters with high sensitivity. The limit of detection is about 3 ppt. Actual analysis of estuary water are reported. In this particular case of natural water, the factors influencing the use of differential pulse adsorptive stripping voltammetry for the determination of cobalt are described in detail.  相似文献   

10.
 A sensitive method for the determination of amitraz pesticide at nanomolar level by adsorptive stripping voltammetry at a hanging mercury drop electrode is described. The cyclic voltammograms demonstrate the adsorption of this compound on the mercury electrode. A systematic study of the various experimental parameters, that affect the stripping response, was carried out by differential pulse voltammetry. Using an accumulation potential of −0.50 V, and 30 s accumulation time, the limit of detection was found to be 2.3 × 10−9 mol L−1 and the relative standard deviations (n = 5) was 2.2% at concentration level of 5.0 × 10−8 mol L−1 of amitraz. The influence of diverse ions and some other pesticides was investigated. Finally, the method was applied to the determination of amitraz in spiked soil and water. The relative standard deviation is 4.5% for 5 determinations of amitraz in water and 3.2% for 5 determinations in soil. Received December 6, 2000. Revision March 1, 2001.  相似文献   

11.
The electrochemical characteristics of azinphos-ethyl (APE) have been determined by means of electrochemical techniques such as cyclic voltammetry (CV) and adsorptive stripping voltammetry (ASV) at a hanging mercury drop electrode (HMDE) over a wide range of pH from 2.0 to 8.0. The cyclic voltammograms demonstrate the adsorption of this compound at the mercury electrode. A systematic study of the various operational parameters that affect the stripping response was carried out by differential pulse voltammetry (DPV). With a preconcentration potential of −0.6 V and a 60 s preconcentration time, the limit of detection was 5.42 × 10−9 M, and the relative standard deviation (n = 5) was 2.7 % at concentration level of 6.45 × 10−7 M APE. The degree of interference from diverse ions and some other pesticides on the differential pulse stripping signal for APE was evaluated. Finally, the method was applied to the determination of APM in spiked soil, tap water, and treated wastewater. The text was submitted by the author in English.  相似文献   

12.
The adsorption and accumulation of NADH and the Cu2+-NADH system at the mercury electrode surface was examined using differential pulse cathodic stripping voltammetry (DPCSV). The method was developed for analytical trace determination of NADH. Experimental and operational parameters for the quantitative determination of NADH were optimized and the detection limit was found to be 9.960 × 10–8 mol/L. The effect of some interferences (e.g. purine compounds, amino acids and some metal ions) was considered. Received: 3 January 1997 / Revised: 1 April 1997 / Accepted: 4 April 1997  相似文献   

13.
The adsorption and accumulation of NADH and the Cu2+-NADH system at the mercury electrode surface was examined using differential pulse cathodic stripping voltammetry (DPCSV). The method was developed for analytical trace determination of NADH. Experimental and operational parameters for the quantitative determination of NADH were optimized and the detection limit was found to be 9.960 × 10–8 mol/L. The effect of some interferences (e.g. purine compounds, amino acids and some metal ions) was considered. Received: 3 January 1997 / Revised: 1 April 1997 / Accepted: 4 April 1997  相似文献   

14.
The determination of trace sulfate ions by the known methods is considered. The most sensitive methods are based on the reduction of sulfate ions to hydrogen sulfide followed by the detection of H2S in absorbing alkaline solutions. The properties of reducing mixtures of different compositions were tested experimentally. Working conditions were selected for the reduction of sulfate ions and the determination of sulfide ions by stripping voltammetry at a silver electrode renewed on line by cutting off a thin layer. The detection limit for sulfate ions was 10–5% in a 0.1-g sample.  相似文献   

15.
The adsorption behavior and differential pulse cathodic adsorptive stripping voltammetry of the pesticide Chlorpyrifos (CP) were investigated at the hanging mercury drop electrode (HMDE). The pesticide was accumulated at the HMDE and a well-defined stripping peak was obtained at –1.2 V vs Ag/AgCl electrode at pH 7.50. A voltammetric procedure was developed for the trace determination of Chlorpyrifos using differential pulse cathodic adsorptive stripping voltammetry (DP-CASV). The optimum working conditions for the determination of the compound were established. The peak current was linear over the concentration range 9.90 × 10–8– 5.96 × 10–7 mol/L of Chlorpyrifos. The influence of diverse ions and some other pesticides was investigated. The analysis of Chlorpyrifos in commercial formulations and treated waste water was carried out satisfactorily  相似文献   

16.
Acibenzolar‐S‐methyl (ASM) is a novel fungicide applied for crop protection. A renewable silver amalgam film electrode was used for the determination of ASM in pH 3.4 Britton? Robinson buffer using square wave adsorptive stripping voltammetry (SW AdSV). The parameters of the method were optimized. The electroanalytical procedure made possible to determine ASM in the concentration range of 5×10?8–3×10?7 mol L?1 (LOD=4.86×10?9, LOQ=1.62×10?8 mol L?1). The effect of common interfering pesticides and heavy metal ions was checked. The validated method was applied in ASM determination in spiked water samples.  相似文献   

17.
A sensitive adsorptive cathodic stripping voltammetry with H‐point standard addition method for simultaneous determination of uranium and cadmium has been developed. The trace amounts of these metal ions can be simultaneously determined using the Levodpa as complexing agent. Optimal conditions were: accumulation time 50 s, accumulation potential 0.0 mV, scan rate 40 mV s?1, supporting electrolyte 0.1 M ammonium buffer pH 9.6, and 1×10?5 M of Levodopa. The results revealed that the cadmium and uranium could be simultaneously determined by H‐point standard addition method with different concentration ratios of uranium to cadmium. The method was successfully applied in a several of real samples.  相似文献   

18.
A hanging copper amalgam drop electrode (HCADE) is used for the determination of traces of iodide by cathodic stripping voltammetry. The cathodic stripping peak of copper(I) iodide from the HCADE is better defined than that of mercury(I) iodide from a hanging mercury drop electrode. Optimum conditions and interferences are reported. With a 3-min deposition time at ?0.1 V vs. SCE, the calibration plot is linear up to 2 × 10?6 mol dm?3 iodide. The detection limit for iodide with the HCADE under voltammetric conditions is 4 × 10?8 mol dm?3; this is lowered to 8 × 10?9 mol dm?3 by using the differential pulse stripping technique.  相似文献   

19.
A reactive electrode (reactrode) made of Prussian blue (PB), graphite and paraffin can be used for a selective determination of thallium ions down to a concentration of 2 · 10–8 mol 1–1. The working principle of the reactrode is that thallium ions can be pumped into Prussian blue during alternating oxidation-reduction cycles. After a preconcentration of thallium ions in PB, the voltammetric determination follows as usually in anodic stripping voltammetry, i.e. the thallium ions are reduced to thallium metal which is subsequently oxidized to give the anodic stripping signal. The peculiarity of the Prussian blue-thallium system is that the thallium ions are situated in the holes of the PB matrix. When reduced to metallic thallium, they are substituted by potassium ions. Cd2+, Fe3+, Zn2+, Cu2+ and Ni2+ do not interfere up to a hundredfold excess, NH4+ does not interfere up to a thousandfold – and Bi3+ up to tenfold excess. The interference by Pb2+ can be suppressed with EDTA.  相似文献   

20.
The well‐known method for the determination of mercury(II), which is based on the anodic stripping voltammetry of mercury(II), has been adapted for applications at the thin film poly(3‐hexylthiophene) polymer electrode. Halide ions have been found to increase the sensitivity of the mercury response and shift it more positive potentials. This behavior is explained by formation of mercuric halide which can be easily deposited and stripped from the polymer electrode surface. The procedure was optimized for mercury determination. For 120 s accumulation time, detection limit of 5 ng mL?1 mercury(II) has been observed. The relative standard deviation is 1.3% at 40 ng mL?1 mercury(II). The performance of the polymer film studied in this work was evaluated in the presence of surfactants and some potential interfering metal ions such as cadmium, lead, copper and nickel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号