首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 422 毫秒
1.
Design of an optical fiber sensor for linear thermal expansion measurement   总被引:1,自引:0,他引:1  
Design and operation of an optical fiber device for temperature sensing and thermal expansion measurement are reported. The modulated intensity has been measured by using a pair of 450 μm core fiber, one acting as the source and the other one as receiving fiber. In this design, the light intensity modulation is based on the relative motion of the optical fibers and a reflective coated lens. By using displacement calibration data for this sensor, the linear thermal expansion of the aluminum rod is determined. This sensor shows an average sensitivity of about 11.3 mV/°C for temperature detection and 7 μm/°C for thermal expansion detection. Device resolution for a linear expansion measurement is about 3 μm for a dynamic range of 600 μm corresponding to a temperature change of 100°C. The measured linear expansion results are checked against the expected theoretical ones and an agreement within ±2 μm is noticed. The operation of this sensor was also compared with other types and some advantages are observed, which verify the capability of this design for such precise measurements.  相似文献   

2.
A combined interference and diffraction pattern, in the form of equidistant interference fringes, resulting from illuminating a vertical metallic wire by a laser beam is analyzed to measure the diameter of four standard wires. The diameters range from 170 to 450 μm. It is found that the error in the diameter measurements increases for small metallic wires and for small distances between the wire and the screen due to scattering effects. The intensity of the incident laser beam was controlled by a pair of sheet polaroids to minimize the scattered radiation. The used technique is highly sensitive, but requires controlled environmental conditions and absence of vibration effects. The expanded uncertainty for k=2 is calculated and found to decrease from U(D)=±1.45 μm for the wire of nominal diameter 170 μm to ±0.57 μm for the diameter 450 μm.  相似文献   

3.
The refractive indices (n) of eight standard oils from Physikalisch Technische Bundesanstalt, Germany were determined with an accuracy of ±1×10−4 by using Abbe Refractometer. The measurements were performed at temperature 20°C in the spectral range 0.4–0.7 μm. The experimental data were fitted to the simple Cauchy dispersion formula and the results were found to be consistent within the limits of experimental error. In all cases, the refractive index decreased monotonically with increasing wavelength. The refractive indices (n) of these oils have been measured as a function of the temperature t (20°C up to 50°C) at λ=0.589 μm and were found to have linear temperature dependencies. The refractive indices of the studied oils and the uncertainty in their values are calculated at λ=0.589. The Lorentz–Lorenz (L–L) formula has been tested and it was found to be valid with a maximum deviation of 0.4% and was used to calculate the molecular polarizability θ.  相似文献   

4.
Ag ink was spontaneously patterned on glass substrate by using the surface energy difference of a pre-patterned octadecyltrichlorosilane (OTS) layer. Ag ink was confined into the hydrophilic area, where OTS layer was not formed. OTS layer was selectively transferred by micro-contact printing (μCP) method and significantly decreased surface energy. As a result, surface of glass substrate was separated as hydrophobic and hydrophilic with and without OTS layer, respectively. Ag line could be successfully patterned with the width of below 10 μm on the glass. The patterned Ag line was dense and abrupt on the edge and the thickness was about 0.25 μm. Ag film showed good adhesion on a glass substrate after anneal above 200 °C. The minimum resistivity was about 4 μΩ cm.  相似文献   

5.
Microlens arrays fabricated by melting photoresist were transferred by reactive ion etching (RIE) into glass (SiO2) and silicon (Si). By controlling the etching rates of the mask and the substrate material, radii of curvature and focal lengths within a wide range can be achieved. For example, glass lenses with diameter 120 μm and focal lengths between 500 μm and 1500 μm were made. The scaling possibilities of microlens arrays, given the use of RIE, are discussed.  相似文献   

6.
The reliability and the expected lifetime of optical fibers used in telecommunication technologies are closely related to the chemical environment action on the silica network. To ensure the long-term mechanical strength of the optical fibers, a polymer coating was applied onto the fiber surface during fiber fabrication. This external coating is vital to ensure a long optical fiber lifetime. Its protective action includes several functions, such as to protect glass fiber from any external damage, to limit chemical attack, in particular that of water, and finally to ensure fatigue protection and bending insensitivity, especially during handling and in-service installation. Since the mechanical strength of the fiber is controlled by its surface characteristics, we propose a new method for increasing fiber strength.The silica optical fibers used were 125 μm in diameter, with a 62.5 μm thick epoxy-acrylate coating. Fibers were rolled up around two similar cylinders. Using a screw, these cylinders moved away from one another and thus subjected the fibers to stretching. Submitted to this mechanical loading, the distended fibers were plunged into hot water at 65 or 85 °C and aged for several days. Then, the fibers were removed from the water and various weights were suspended on the fiber ends. Thus, the fibers were subjected to a tensile loading in static fatigue for several days. Just before fiber rupture, the fibers were unloaded and subjected to dynamic tensile tests at different velocities.Result analysis proved that the aging in hot water increased the fiber strength. The Weibull's diagram study shows a bimodal dispersion of defects on the fiber surface and the important role of polymer coating.  相似文献   

7.
Various types of glass fiber were studied to determine their suitability for transmitting linearly polarized light. Polarization and magnetooptical experiments were performed on index-gradient fibers. These fibers have birefringent properties as a result of mechanical stress created during fabrication. The interaction of double refraction and the Faraday effect in a longitudinal magnetic field is explained theoretically. The rule governing such fibers in industrial magnetic fields is that the Faraday rotation (φ < 5°/cm) per field length is always substantially smaller than the phase difference (δs = 57.2°/cm) per fiber length.  相似文献   

8.
A modified version of the echo-planar imaging technique incorporating a Carr–Purcell train of 180° rf pulses (PEPI) has been implemented on a standard spectrometer. It is demonstrated that artifacts in the image due to cumulative errors in the rf field can be reduced by replacing each 180° pulse by a composite sequence of three rf pulses. Artifact-free 3D images at 94 μm voxel resolution are obtained within 15 min. This technique has been applied to study the drying process in an initially water-saturated model porous medium with characteristicT*2of order 700 μs.  相似文献   

9.
Microwave spectra of the trans-trans (TT) isomer of methylpropylether and its 12 isotopically substituted species were measured. The rs structure of this isomer was determined from the observed moments of inertia. Structural parameters of this isomer were roughly equal to those of the reported rs structures of trans-ethylmethylether and propane. Dipole moments of the TT isomer for the normal and two deuterated species were determined by Stark-effect measurements. For the normal species, the dipole moment was μa = 0.082 ± 0.010, μb = 1.104 ± 0.013, and μtotal = 1.107 ± 0.013 D making angles of 4°17′ with the b-inertial axis, of 6°7′ with the bisector of the COC angle. The barrier to internal rotation of the CH3C group was calculated to be 3300 ± 60 cal/mole from A-A splittings of the spectra in the CH3C excited torsional state.  相似文献   

10.
The Ag2O–TiO2–SiO2 glasses were prepared by Ag+/Na+ ion-exchange method from Na2O–TiO2–SiO2 glasses at 380–450 °C below their glass transition temperatures (Tg), and their electrical conductivities were investigated as functions of TiO2 content and the ion-exchange ratio (Ag/(Ag+Na)). In a series of glasses 20R2xTiO2·(80−x)SiO2 with x=10, 20, 30 and 40 in mol%, the electrical conductivities at 200 °C of the fully ion-exchanged glasses of R=Ag were in the order of 10−5 or 10−4 S cm−1 and were 1 or 2 orders of magnitude higher than those of the initial glasses of R=Na. The glass of x=30 exhibited the highest increase of conductivity from 3.8×10−7 to 1.3×10−4 S cm−1 at 200 °C by Ag+/Na+ ion exchange among them. When the ion-exchange ratio was changed in 20R2O·30TiO2·50SiO2 system, the electrical conductivity at 200 °C exhibited a minimum value of 7.6×10−8 S cm−1 around Ag/(Ag+Na)=0.3 and increased steeply in the region of Ag/(Ag+Na)=0.5–1.0. When the ion-exchange temperature was changed from 450 to 400 °C, the conductivity of the ion-exchanged glass of x=30 decreased. The infrared spectroscopy measurement revealed that the ion-exchange temperature of 450 °C induced a structural change in the glass of x=30. The Tg of the fully ion-exchanged glass of x=30 was 498 °C. It was suggested that the incorporated silver ions changed the average coordination number of titanium ions to form higher ion-conducting pathway and resulted in high conductivity in the titanosilicate glasses.  相似文献   

11.
An efficient, high-power mid-infrared laser source based on ZnGeP2 (ZGP) optical parametric oscillator (OPO) is presented. Using a Q-switched Ho:YAG laser as the pump source a total output power of 10.6 W was obtained in the 3–5 μm band at 10 kHz and 8.5 W at 20 kHz. The Ho:YAG laser was pumped by two diode-pumped polarization coupled Tm:YLF lasers. Optical-to-optical efficiency achieved is >8.8% (laser-diode 792 nm to mid-IR 3–5 μm). With a commercial PtSi infrared camera (256×256 pixel focal plane array, 24 μm pitch) the pointing stability of Ho pump, signal and idler beam was measured to be better than 30 μrad. Whilst propagating the OPO beams over 100 m, little absorption for the idler beam was observed, resulting in a significant higher peak-to-peak value of ±22%, whereas the peak-to-peak stability of the signal pulses remained unchanged (±13%). To cite this article: M. Schellhorn et al., C. R. Physique 8 (2007).  相似文献   

12.
Zirconium doped zinc oxide thin films were deposited by reactive chemical pulverization spray pyrolysis technique on heated glass substrates at 400 °C, 450 °C and 500 °C using zinc and zirconium chlorides as precursors. The effect of zirconium dopant and surface roughness on the nonlinear optical properties was investigated using atomic force microscopy (AFM) and third harmonic generation (THG). The best value of susceptibility χ(3) was obtained from the doped films with less roughness. A strong third order nonlinear optical susceptibility χ(3) = 20.49 × 10−12 (esu) of the studied films was found for the 5% doped sample at 450 °C.  相似文献   

13.
We have investigated the acousto-optically Q-switched intracavity second-harmonic generation of 1.06 μm in a 1.9-mm-long BiB3O6 crystal, cut for type-I phase-matching direction of (θ,)=(168.9°,90°), performed in a diode-end-pumped Nd:YVO4 laser. When the incident pump power was 4.3 W at 30 kHz of pulse repetition frequency, a maximum average green output power of 480 mW, the shortest pulse with FWHM width of 72 ns, the highest single pulse energy of 16 μJ and the maximum peak power of 222 W were obtained, giving the corresponding optical conversion efficiency of 11.2%. The effect of varying temperature in BIBO crystal on the average green output power was also investigated.  相似文献   

14.
First-order type I quasi-phase-matched (QPM) blue second-harmonic generation was demonstrated in periodically poled LiNbO3 with period of 14.5 μm using d31. 52 μJ of harmonic blue light at 0.473 μm was generated pumped by 114 μJ 35 ps pulse laser at 0.946 μm at 150 °C with a conversion efficiency of 45.6%. The average conversion efficiencies of 41.3% and 19% were also obtained at 150 °C, respectively, in the conventional first- and third-order QPM blue second-harmonic generation at 0.473 μm. The temperature acceptance bandwidths of 20 mm length periodically poled LiNbO3 with first-order grating periods of 14.5 and 4.5 μm are 2.0 and 0.9 °C, respectively. The larger acceptance bandwidths and grating period for than those for enhance the frequency conversion efficiency, which shows the polarization dependence of quasi-phase matching.  相似文献   

15.
This study addresses the optimization of rf magnetron-sputtered hydrogenated ZnO:Al (HAZO) films as front contacts in microcrystalline silicon solar cells. The front contact of a solar cell has to be highly conductive and highly transparent to visible and infrared radiation. Furthermore, it has to scatter the incident light efficiently in order for the light to be effectively trapped in the underlying silicon layers. In this research, HAZO films were rf-magnetron-sputtered on glass substrates from a ceramic (98 wt% ZnO, 2 wt% Al2O3) target. Various compositions of AZO films on glass substrates were prepared by changing the H2/(Ar + H2) ratio of the sputtering gas. The resulting smooth films exhibited high transparencies (T  85% for visible light including all reflection losses) and excellent electrical properties (ρ = 2.7 × 10−4 Ω · cm). Depending on their structural properties, these films developed different surface textures upon post-deposition etching using diluted hydrochloric acid. The light-scattering properties of these films could be controlled simply by varying the etching time. Moreover, the electrical properties of the films were not affected by the etching process. Therefore, within certain limits, it is possible to optimize the electro-optical and light-scattering properties separately. The microcrystalline silicon (μc-Si:H)-based p–i–n solar cells prepared using these new texture-etched AZO:H substrates showed high quantum efficiencies in the long wavelength range, thereby demonstrating effective light trapping. Using the optimum AZO:H thin-film textured surface, we achieved a p–i–n μc-Si solar cell efficiency of 7.78%.  相似文献   

16.
A detailed rotational analysis of the microwave spectrum between 26.5 and 40 GHz of phosphaethene, CH2=PH, has been carried out. This molecule is the simplest member of a new class of unstable molecules—the phosphaalkenes. The species can be produced by pyrolysis of (CH3)2PH, CH3PH2 and also somewhat more efficiently from Si(CH3)3CH2PH2. Full first-order centrifugal distortion analyses have been carried out for both 12CH231PH and 12CH231PD yielding: A0 = 138 503.20(21), B0 = 16 418.105(26), and C0 = 14 649.084(28) MHz for 12CH231PH. The 101-000 μA lines have also been detected for 13CH2PH, cis-CDHPH and trans-CHDPH. These data have enabled an accurate structure determination to be carried out which indicates: r(HcC) = 1.09 ± 0.015 Å, (HcCP) = 124.4 ± 0.8°; r(HtC) = 1.09 ± 0.015 Å, (HtCP) = 118.4 ± 1.2°; r(CP) = 1.673 ± 0.002 Å, (HCH) = 117.2 ± 1.2°; r(PH) = 1.420 ± 0.006 Å, (CPH) = 97.4 ± 0.4°. The dipole moment components have been determined as μA = 0.731 (2), μB = 0.470 (3), μ = 0.869 (3) D for CH2PH; μA = 0.710 (2), μB = 0.509 (10), μ = 0.874 (7) D for CH2PD.  相似文献   

17.
The real-time monitoring of the second-harmonic generation (SHG) was used to optimize the poling condition and to study the nonlinear optical (NLO) properties of the polyetherketone (PEK-c) guest–host polymer films. The high second-order NLO coefficient χ33(2)=11.02 pm/v measured at 1.064 μm was achieved when the weight percent of DR1 guest in the polymer system is 20%. The NLO activity of the poled DR1/PEK-c polymer film can maintain more than 80% of its initial value when temperature is under 100°C, and the normalized second-order NLO coefficient can maintain more than 85% after 2400 s at 80°C.  相似文献   

18.
Silicon nanostructures, called Si nanowhiskers, have been successfully synthesized on Si(1 0 0) substrate by high vacuum electron beam annealing (EBA). Detailed analysis of the Si nanowhisker morphology depending on annealing temperature, duration and the temperature gradients applied in the annealing cycle is presented. A correlation was found between the variation in annealing temperature and the nanowhisker height and density. Annealing at 935 °C for 0 s, the density of nanowhiskers is about 0.2 μm−2 with average height of 2.4 nm grow on a surface area of 5×5 μm, whereas more than 500 nanowhiskers (density up to 28 μm−2) with an important average height of 4.6 nm for field emission applications grow on the same surface area for a sample annealed at 970 °C for 0 s. At a cooling rate of −50 °C s−1 during the annealing cycle, 10–12 nanowhiskers grew on a surface area of 5×5 μm, whereas close to 500 nanowhiskers grew on the same surface area for samples annealed at the cooling rate of −5 °C s−1. An exponential dependence between the density of Si nanowhiskers and the cooling rate has been found. At 950 °C, the average height of Si nanowhiskers increased from 4.0 to 6.3 nm with an increase of annealing duration from 10 to 180 s. A linear dependence exists between the average height of Si nanowhiskers and annealing duration. Selected results are presented showing the possibility of controlling the density and the height of Si nanowhiskers for improved field emission properties by applying different annealing temperatures, durations and cooling rates.  相似文献   

19.
Mechanical and electrical properties of silver stabilizer layer of coated conductor, which was prepared using nano silver paste as starting materials, have been investigated. Nano silver paste was coated on YBCO (Y1Ba2Cu3O7−δ) film by a dip coating method with a speed of 25 mm/min. Coated film was dried in air and heat treated at 400–700 °C in a flowing oxygen atmosphere. Adhesion strength between YBCO and silver layer was measured by Tape test (ASTM D 3359). The hardness and electrical conductivity of the sample were measured by pencil hardness test (ASTM D 3363). Surface and volume resistance were measured by using LORESTA-GP (MITSUBISHI). The sample heat treated at 500 °C showed poor adhesiveness of 1B but it is clearly enhanced to 5B when samples were heat treated at higher than 600 °C. The silver layer heat treated at 700 °C showed a high hardness value of higher than 9H and a volume resistance of 1.417 × 10−7 Ω mm at room temperature. SEM observations showed that a dense silver layer was formed with a thickness of about 2 μm. Dip coated silver layer prepared by using nano silver paste showed superior electrical and mechanical characteristics which is comparable to those that sputter deposited Ag layer.  相似文献   

20.
The neutrino experiment KARMEN is situated at the beam stop neutrino source ISIS which provides νμ's, νe's and from the π+−μ+-decay at rest. The oscillation channels νμ → νe and are investigated with a 56 t liquid scintillation calorimeter. No evidence for oscillations could be found with KARMEN, resulting in 90% CL exclusion limits of sin2(2Θ) < 8.5 · 10−3 ( ) and sin2(2Θ) < 4.0 · 10−2μ → νe) for Δm2 > 100 eV2. In 1996, the experiment has been upgraded by an additional veto counting system with a total coverage of 300 m2. The new system allows the identification of cosmic muons in the vicinity of the detector. Vetoing these muons suppresses energetic neutrons from deep inelastic scattering of muons as well as from μ-capture by a factor of 40. Up to 1996, these neutrons represented the main background for oscillation search. The experimental sensitivity for will be significantly enhanced towards sin2(2Θ) 1.0 · 10−3 after a further measuring period of 2–3 years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号