首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Adsorption of cationic (dodecylpyridinium bromide) and nonionic (Triton X-100) surfactants from their mixed aqueous solutions on a SiO2 surface at pH 3.6, 6.5, and 10 is studied by the UV spectroscopy, capillary zone electrophoresis, and wetting measurements. It is shown that the adsorption of cationic and nonionic surfactants from mixed solutions is accompanied by synergistic effects manifesting themselves as an enhanced adsorption of both surfactants compared to their adsorption from individual solutions. The effect of second component becomes most pronounced under conditions when differences in adsorption abilities of individual surfactants are rather large (at pH 3.6 and 10). It is shown that the adsorption of surfactants from mixed solutions can be controlled by the adsorption ability of components via the variations in solution pH.__________Translated from Kolloidnyi Zhurnal, Vol. 67, No. 2, 2005, pp. 281–287.Original Russian Text Copyright © 2005 by Kharitonova, Ivanova, Summ.  相似文献   

2.
The interaction energy between hydrophobic SiO2 particles in aqueous solutions of a cationic surfactant (dodecylpyridinium bromide, DDPB), a nonionic surfactant (Triton X-100, TX-100), and their mixed solutions was measured as a function of concentration. Synergism has been observed in mixed surfactant solutions: the surfactant concentration required for achieving the set interaction energy in the mixed solutions was lower than in the solutions of the individual surfactants. The molecular interaction parameters in surfactant mixtures were calculated using the Rosen model. Chain-chain interactions between nonionic and cationic surfactants were suggested as the main reason for the synergism.  相似文献   

3.
The adsorption of carboxymethylcellulose (CMC) in the presence or absence of the surfactants: anionic SDS, nonionic Triton X-100 and their mixture SDS/TX-100 from the electrolyte solutions (NaCl, CaCl2) on the alumina surface (Al2O3) was studied. In each measured system the increase of CMC adsorption in the presence of surfactants was observed. This increase was the smallest in the presence of SDS, a bit larger in the presence of Triton X-100 and the largest when the mixture of SDS/Triton X-100 was used. These results are a consequence of formation of complexes between the CMC and the surfactant particles. Moreover, the dependence between the amount of surfactants’ adsorption and the CMC initial concentration was measured. It comes out that the surfactants’ adsorption amount is not dependent on the CMC initial concentration and moreover, it is unchanged in the whole measured concentration range. The influence of kind of electrolyte, its ionic strength as well as pH of a solution on the amount of the CMC adsorption at alumina surface was also measured. The amount of CMC adsorption is larger in the presence of NaCl than in the presence of CaCl2 as the background electrolyte. It is a result of the complexation reaction between Ca2+ ions and the functional groups of CMC belonging to the same macromolecule. As far as the electrolyte ionic strength is concerned the increase of CMC adsorption amount accompanying the increase of electrolyte ionic strength is observed. The reason for that is the ability of electrolyte cations to screen every electrostatic repulsion in the adsorption system. Another observation is that the increase of pH caused the decrease of CMC adsorption. The explanation of this phenomenon is connected with the influence of pH on both dissociation degree of polyelectrolyte and kind and concentration of surface active groups of the adsorbent.  相似文献   

4.
The adsorption isotherms of nonionic surfactants Triton X-100 and Triton X-305 from water and cyclohexane on carbon black have been determined at 15 and 30°C. The Langmuir-type and BET-type isotherms are obtained for adsorption of Triton X-100 and Triton X-305 from water and cyclohexane respectively. Both the contact angles of water for graphite/water/air and graphite/water/cyclohexane decrease monotonously with increasing surfactant concentration. From these results, it is proposed that the adsorption of Triton X-100 and Triton X-305 on carbon black or graphite from water is monolayer. For the adsorption from cyclohexane solutions, the ethyleneoxide group of the surfactant molecules may be adsorbed onto the polar spot at the surface of carbon black, and the hydrophobic group of adsorbed molecules may direct toward the liquid phase or attaches to the nonpolar surface region around the polar spot. As the concentration increases, the ethylene oxide groups of the adsorbed molecules can be aggregated with each other via polar interactions to form hemi-reversed micelle.  相似文献   

5.
Dependences of the surface tension of aqueous solutions of cationic (dodecylpyridinium bromide) and nonionic (Tween 80, Triton X-100) surfactants and their mixtures on total surfactant concentration and solution composition were studied. The values of critical micellization concentration (CMC) and excess free energy of adsorption were determined from tensiometric measurements. Based on Rubingh–Rosen model (approximation of the theory of regular solutions), the compositions of micelles and adsorption layers at the solution–air interface as well as parameters of interaction between the molecules of cationic and nonionic surfactants were calculated for the systems indicated above. It was established that, in the case of surfactant mixtures with considerable difference in the CMCs, the micelles of individual surfactant with lower CMC value are formed. The effect of negative deviation from the ideality during the adsorption of surfactants from mixed solutions at the solution–air interface was disclosed. It was shown that the interaction energy depends significantly on the composition of mixed systems.  相似文献   

6.
Surfactant adsorption on quartz and wetting of glass by aqueous solutions of tetradecyltrimethylammonium bromide, Triton X-100, and their mixtures are studied. It is shown that synergistic adsorption of surfactants from mixed solutions occurs in the region of low concentrations. In the region of high concentrations, mixed molecular aggregates of the cationic and nonionic surfactants are formed on the surface. The structure of the mixed adsorption layers is discussed.  相似文献   

7.
The adsorption kinetics of Triton X-100 and Triton X-405 at solution/air and solution/hexane interfaces is studied by the recently developed fast formed drop technique. The dynamic interfacial tension of Triton X-100 and Triton X-405 solutions against hexane has been measured without preequilibration of the water and oil phases. It is found that the dynamic interfacial tension of Triton X-100 solutions passes through a minimum. This strange behavior is attributed to partial solubility of the surfactant in hexane. Such minima of the dynamic interfacial tension of Triton X-405 solutions have not been observed, which correlates well with the solubilities of both surfactants in hexane reported in the literature. The dynamic surface tension of solutions of both surfactants and the dynamic interfacial tension of Triton X-405 solutions are interpreted by the Ward and Tordai model for diffusion controlled adsorption. It is shown that proper interpretation of the experimental data depends on the type of isotherm used. More consistent results are obtained when the Temkin isotherm is used instead of the Langmuir isotherm. The results obtained with Triton X-100 at the solution/air interface confirm that the adsorption of this surfactant occurs under diffusion control. The adsorption of Triton X-405 at solution/air and at solution/hexane interfaces seems to occur under diffusion control at short periods of time, but under mixed (diffusion-kinetic) control at long periods of time. A hypothesis is drawn to explain this phenomenon by changes in the shape of the large hydrophilic heads of Triton X-405 molecules. Copyright 2000 Academic Press.  相似文献   

8.
Adsorption isotherms of cationic surfactant, dodecylpyridinium chloride, on an Aerosil OX50 and isotherms of surface charge against the background of 0.001- and 0.1-M KCl solutions at pH 7 and 9 were measured and analyzed. Different forms of adsorption isotherms of surfactants at low and high electrolyte concentrations are explained from differences in the formation of the surface charge of Aerosil. Comparison of the isotherms of surfactant adsorption and surface charge allowed us to make conclusions about the surfactant orientation and structure of an adsorption layer, as well as to determine the fraction of surfactant molecules in the first and second adsorption layers.  相似文献   

9.
赵振国  顾惕人 《化学学报》1987,45(7):645-650
测定了15℃和30℃时炭黑自水和环己烷中吸附非离子型表面活性剂TritonX-100和Triton X-305的等温线;计算了吸附过程的标准热力学函数;测定了石墨/水/环己烷和石墨/水/空气的接触角与表面活性剂浓度的关系, 分析所得结果,可得结论:在炭黑/水或石墨/水界面上,Triton型表面活性分子形成单分子吸附层,分子以憎水的iso-C8H17C6H4基团附着在表面,而以亲水的聚氧乙烯链伸入水相的方式取向;在炭黑/环已烷或石墨/环己烷界面上,分子是通过聚氧乙烯链吸附到表面上的,当浓度增加时分子在表面可能通过聚氧乙烯链间的相互作用而发生聚集,即可能形成表面反式胶团。  相似文献   

10.
An experimental study on the electrophoretic mobility (μe) of polystyrene particles after the adsorption of non-ionic surfactants with different chain lengths is described. Two sulphate latexes with relatively low surface charge densities (3.2 and 4.8 μC cm−2) were used as solid substrate for the adsorption of four non-ionic surfactants, Triton X-100, Triton X-165, Triton X-305 and Triton X-405, each one with 9–10, 16, 30 and 40 molecules of ethylene oxide (EO), respectively. The electrophoretic mobility of the polystyrene–non-ionic surfactant complexes was studied versus the amount of adsorbed surfactant (Γ). The presence of non-ionic surfactant onto particles surface seems to produce a slight shifting of the slipping plane because the mobilities of the different complexes display a very small decreasing. The increase in the number of EO chains in the surfactant molecule seems to operate as a steric impediment which decreases the number of adsorbed large surfactant molecules. The electrophoretic mobilities of the latex–surfactant complexes with maximum adsorption were measured versus the pH and ionic strength of the dispersion. While the different complexes showed a similar qualitative behaviour compared with that of the bare latex against the pH, the adsorption of the surfactant reduces the typical maximum in the μe−log[electrolyte].  相似文献   

11.
Possible application of the SCFA lattice model to describe the adsorption of ionic surfactants on the surface whose charge and potential can be changed under the effect of adsorbing surfactant was theoretically studied. Calculated isotherms of surfactant adsorption were compared with experimental adsorption isotherms of dodecylpyridinium chloride on silica. It was shown that, upon the adsorption of cationic surfactants on SiO2, the ionization of silanol surface groups is enhanced and the surface charge increases. The used set of parameters suggesting the interaction between the aliphatic tails of surfactant molecules and the surface made it possible to reach good agreement with the experiment.  相似文献   

12.
Dispersions of multi-walled carbon nanotubes (MWNTs) assisted by surfactant adsorption were prepared for a number of ionic and non-ionic surfactants including sodium 4-dodecylbenzenesulfonate (NaDDBS), hexadecyl(trimethyl)azanium bromide (CTAB), sodium dodecane-1-sulfonate (SDS), Pluronic? F68, Pluronic? F127, and Triton? X-100 to examine the effects of nanotube diameter, surfactant concentration, and pH on nanotube dispersability. Nanotube diameter was found to be an important role in surfactant adsorption rendering single-walled carbon nanotube studies as unreliable in predicting MWNT dispersive behavior. Similar to other reports, increasing surfactant concentrations resulted in a solubility plateau. Quantification of nanotube solubility at these plateaus demonstrated that CTAB is the best surfactant for MWNTs at neutral pH conditions. Deviations from neutral pH demonstrated negligible influence on non-ionic surfactant adsorption. In contrast, both cationic and anionic surfactants were found to be poor dispersing aids for highly acidic solutions while, CTAB remained a good surfactant under strongly basic conditions. These pH dependent results were explained in the context of nanotube surface ionization and Debye length variation.  相似文献   

13.
The reverse flow (i.e., the efflux from glass capillaries occurring after the stop of capillary rise) of mixed aqueous solutions of nonionic (Triton X-100) and cationic (cetyl- and dodecyltrimethylammonium bromides) surfactants is studied. The effect of electrolytes (salts and acids) on the process kinetics and the wetting in these systems is investigated. Possible causes of the reverse flow are discussed. They are related to the peculiar features of the interaction of nonionic and cationic surfactants with glass and to the differences in the surfactant adsorption from quiescent and moving solutions. It is shown that the wetting by the mixed surfactant solutions, including its kinetics, can be controlled by the addition of electrolytes.  相似文献   

14.
The adsorption of carboxymethylcellulose (CMC) in the presence of the surfactants: anionic SDS, nonionic polyethylene glycol p-(1,1,3,3-tetramethylbutyl)-phenyl ether (Triton X-100) and their mixtures SDS/polyethylene glycol p-(1,1,3,3-tetramethylbutyl)-phenyl ether with different molar ratios (1:1; 1:3 and 3:1) from the electrolyte solutions (NaCl, CaCl2) on the manganese dioxide surface (MnO2) was studied. In every measured system the increase of CMC adsorption in the presence of surfactants was observed. This increase was the smallest in the presence of SDS, a bit larger in the presence of polyethylene glycol p-(1,1,3,3-tetramethylbutyl)-phenyl ether and the largest when the mixtures of SDS/polyethylene glycol p-(1,1,3,3-tetramethylbutyl)-phenyl ether were used. Among the measured mixtures, the mixture of SDS/polyethylene glycol p-(1,1,3,3-tetramethylbutyl)-phenyl ether with the molar ratio 1:3 caused the largest increase of CMC adsorption amount. These results are a consequence of formation of complexes between the carboxymethylcellulose macromolecules and the surfactant molecules. In order to determine the electrokinetic properties of the system the surface charge density of MnO2 and the zeta potential measurements were conducted in the presence of the CMC macromolecules and the surfactants. The obtained data showed that the adsorption of CMC or CMC/surfactants complexes on the manganese dioxide surface strongly influences the structure of the electric double layer MnO2/electrolyte solution.  相似文献   

15.
The protolytic properties of N,N-dimethyl-N′-(2-hydroxybenzyl) ethylenediamine (HL) and its complexation with copper(II) in the presence of cationic (cetyltrimethylammonium bromide) and nonionic (Triton X-100) surfactants were studied by pH-metry, spectrophotometry, and mathematical simulation of the equilibria. Cetyltrimethylammonium bromide affects the H2L2 ⇄ 2HL equilibrium. Along with the protonated monomeric and dimeric species, triprotonated tetrameric species were revealed in surfactant solutions, as in aqueous solutions of isopropyl alcohol. The surfactants affect the complexation of HL with Cu(II). The 1 : 2 complex with the phenolate form in solutions of cetyltrimethylammonium bromide is formed in a more acidic medium (pH ∼5.5) compared to an aqueous solution of isopropyl alcohol (pH ∼11). The apparent stability constants of the complexes increase in the presence of surfactants, especially of cetyltrimethylammonium bromide.__________Translated from Zhurnal Obshchei Khimii, Vol. 75, No. 3, 2005, pp. 379–382.Original Russian Text Copyright © 2005 by Sal’nikov, Boos, Ryzhkina, Ganieva.  相似文献   

16.
《Colloids and Surfaces》1993,69(4):249-263
The dynamic surface of sodium tetradecylsulphate and sodium bexadecylsulphate solutions in water and also in Triton X-100 solutions was measured by the maximum bubble-pressure method, using modern computerized instrumentation, for a wide range of surface lifetimes (from 0.001 to 10 s), temperatures (from 30 to 80°C) and surfactant concentrations (from 1 to 200 CMC). On the basis of a previously suggested adsorption kinetics theory for micellar solutions of ionogenic surfactants (V.B. Fainerman, Colloids Surfaces, 62 (1992) 333) a method was developed for the calculation of the micellar dissociation rate constant k. For the surfactants studied, k increases with increasing concentration. Moreover, for ionic surfactants the dependence of k on concentration (C) becomes more striking for C> (10–30) CMC. This can be explained by a micelle shape transition and by a strengthening of the intermolecular repulsion in micelles. In solutions of the ionic surfactants the constant k increasing with increasing temperature, whereas in Triton X-100 solutions a temperature dependence is absent. This phenomenon is associated with the different nature of the molecular interactions for ionogenic and non-ionogenic surfactants in micelles. The k values, obtained from results of dynamic surface tension measurements, are in satisfactory agreement with the results of a study of the relaxation of micellar solutions published previously.  相似文献   

17.
The measurements of the advancing contact angle for water, glycerol, diiodomethane and aqueous solutions of Triton X-100 (TX-100), Triton X-165 (TX-165), sodium dodecyl sulfate (SDDS), sodium hexadecyl sulfonate (SHDS), cetyltrimethylammonium bromide (CTAB) and cetylpyridinium bromide (CPyB) on quartz surface were carried out. On the basis of the contact angles values obtained for water, glycerol and diiodomethane the values of the Lifshitz–van der Waals component and electron-acceptor and electron-donor parameters of the acid–base component of the surface free energy of quartz were determined. The determined components and parameters of the quartz surface free energy were used for interpretation of the influence of nonionic, anionic and cationic surfactants on the wettability of the quartz. From obtained results it was appeared that the wettability of quartz by nonionic and anionic surfactants practically does not depend on the surfactants concentration in the range corresponding to their unsaturated monolayer at water–air interface and that there is linear dependence between adhesional and surface tension of aqueous solution of these surfactants. This dependence for TX-100, TX-165, SDDS and SHDS can be expressed by lines which slopes are positive. This slope and components of quartz surface free energy indicate that the interaction between the water molecules and quartz surface might be stronger than those between the quartz and surfactants molecules. So, the surface excess of surfactants concentration at the quartz–water interface is probably negative, and the possibility of surfactants to adsorb at the quartz/water film–water interface is higher than at the quartz–water interface. This conclusion is confirmed by the values of the adhesion work of “pure” surfactants, aqueous solutions of surfactants and water to quartz surface. In the case of the cationic surfactants the relationship between adhesional and surface tension is more complicated than that for nonionic and anionic surfactants and indicates that the relationship between the adsorption of the cationic surfactant at water–air and quartz–water interface depends on the concentration of the surfactants in the bulk phase.  相似文献   

18.
A common nonionic surfactant Triton X-100 was dissolved in a commercial ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoroborate (bmimBF4). The surface tension of the bmimBF4 solution was decreased with increasing the content of surfactant Triton X-100, a similar phenomenon with aqueous solution systems. Dynamic surface properties of Triton X-100 in bmimBF4 were measured. It was found that pure IL solvents need rearrangement at the air-bmimBF4 interface during the beginning stage of absorption. Moreover, the adsorption model was found to be in accord with the diffusion-controlled adsorption mechanism, and further, the dilute bmimBF4 solutions are close to the diffusion-controlled adsorption.  相似文献   

19.
表面活性剂中DNA构象变化的研究   总被引:13,自引:0,他引:13  
以荧光探针法研究了表面活性剂与小牛胸腺DNA的相互作用,结果表明:阳离子表面活性剂主要通过静电引力和疏水方式与DNA作用;阴离子表面活性剂与DNA之间存在静电排斥力,两者之间的相互作用不太明显;而非离子表面活性剂与DNA的相互作用类似于有机溶剂对DNA的影响,即通过溶液的极性、粘度和介电常数来影响DNA的构象,表面活性剂使得DNA构象发生较大的变化,预示了它可能使DNA的生物功能发生较大的变化。  相似文献   

20.
Foam fluids are widely used in petroleum engineering, but long-standing foam stability problems have limited the effectiveness of their use. The study explores the synergistic effects and influencing factors of SiO2 nanoparticles (SiO2-NPs) with different wettability properties and three different surfactants. The paper investigates the foaming performance of different types of surfactants and analyzes and compares the stability of foam after adding hydrophilic and hydrophobic SiO2-NPs from macroscopic as well as microscopic perspectives, and the effects of temperature and inorganic salts on the stability of mixed solutions. The experimental results show that: 1) hydrophilic nanoparticles can significantly enhance the foam stability of amphoteric surfactants, with a small increase in the foam stability of anionic and cationic surfactants; 2) The concentration of nanoparticles did not have a significant effect on the stability of the cationic surfactants and this conclusion was verified in the experimental results of the surface tension measured below;3) The cationic surfactants showed better temperature resistance at temperatures of 50–90 °C. Both amphoteric surfactant solutions with the addition of hydrophilic SiO2-NPs or hydrophobic SiO2-NPs significantly improved the temperature resistance of the foam at high temperatures. The anionic surfactant solution with hydrophobic SiO2-NPs did not enhance the solution temperature resistance; 4) The surface tension of the surfactant solution gradually increases with increasing concentration of hydrophilic or hydrophobic SiO2-NPs and then levels off; 5) the hydrophilic SiO2-NPs had a significant effect on the salt tolerance of the anionic and amphoteric surfactant solutions. The salt tolerance of cationic surfactant solutions with hydrophobic SiO2-NPs was better than that of surfactants with hydrophilic SiO2-NPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号