首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Hydration of nitrosylruthenium bis(alkynyl) complex TpRu(CCPh)2(NO) (1) (Tp = BH(pyrazol-1-yl)3) was carried out in the presence of HBF4.Et2O in distilled MeOH and afforded the metallacycle TpRu{CH=C(Ph)C(O)CH(Ph)}(NO) (2) (39%) and the bis(ketonyl) TpRu(CH2C(O)Ph)2(NO) (3) (37%). While double hydration of 1 gave 3, 2 was produced through a combination of insertion and hydration processes. On the other hand, a similar reaction performed in THF instead of MeOH afforded 2 (52%), the acyl-ketonyl complex TpRu(C(O)CH2Ph)(CH2C(O)Ph)(NO) (4) (8.9%), and trace amounts of 3 and TpRu(CCPh)(CH2C(O)Ph)(NO) (5). Moreover, the 1/HBF4.Et2O/H2O reaction system in distilled MeOH at 0 degrees C gave rise to 5 exclusively (79%). Treatment of THF solution of isolated 5 with water in the presence of protic acid furnished 3 and 4, revealing that 5 is the intermediate in their formation.  相似文献   

2.
The reaction of monomeric and dimeric rhodium(I) amido complexes with unactivated olefins to generate imines is reported. Transamination of {(PEt(3))(2)RhN(SiMePh(2))(2)} (1a) or its -N(SiMe(3))(2) analogue 1b with p-toluidine gave the dimeric [(PEt(3))(2)Rh(mu-NHAr)](2) (Ar = p-tolyl) (2a) in 80% isolated yield. Reaction of 2a with PEt(3) generated the monomeric (PEt(3))(3)Rh(NHAr) (Ar = p-tolyl) (3a). PEt(3)-ligated arylamides 2a and 3a reacted with styrene to transfer the amido group to the olefin and to form the ketimine Ph(Me)C=N(p-tol) (4a) in 48-95% yields. The dinuclear amido hydride (PEt(3))(4)Rh(2)(mu-NHAr)(mu-H) (Ar = p-tolyl) (5a) was formed from reaction of 2a in 95% yield, and a mixture of this dimeric species and the (PEt(3))(n)RhH complexes with n = 3 and 4 was formed from reaction of 3a in a combined 75% yield. Propene reacted with 2a to give Me(2)C=N(p-tol) (4b) and 5a in 90 and 57% yields. Propene also reacted with 3a to give 4b and 5a in 65 and 94% yields. Analogues of 2a and 3a with varied electronic properties also reacted with styrene to form the corresponding imines, and moderately faster rates were observed for reactions of electron-rich arylamides. Kinetic studies of the reaction of 3a with styrene were most consistent with formation of the imine by migratory insertion of olefin into the rhodium-amide bond to generate an aminoalkyl intermediate that undergoes beta-hydrogen elimination to generate a rhodium hydride and an enamine that tautomerizes to the imine.  相似文献   

3.
The metal-mediated coupling between coordinated EtCN in the platinum(II) and platinum(IV) complexes cis- and trans-[PtCl(2)(EtCN)(2)], trans-[PtCl(4)(EtCN)(2)], a mixture of cis/trans-[PtCl(4)(EtCN)(2)] or [Ph(3)PCH(2)Ph][PtCl(n)(EtCN)] (n = 3, 5), and dialkyl- and dibenzylhydroxylamines R(2)NOH (R = Me, Et, CH(2)Ph, CH(2)C(6)H(4)Cl-p) proceeds smoothly in CH(2)Cl(2) at 20-25 degrees C and the subsequent workup allowed the isolation of new imino species [PtCl(n){NH=C(Et)ONR(2)}(2)] (n = 2, R = Me, cis-1 and trans-1; Et, cis-2 and trans-2; CH(2)Ph, cis-3 and trans-3; CH(2)C(6)H(4)Cl-p, cis-4 and trans-4; n = 4, R = Me, trans-9; Et, trans-10; CH(2)Ph, trans-11; CH(2)C(6)H(4)Cl-p, trans-12) or [Ph(3)PCH(2)Ph][PtCl(n){NH=C(Et)ONR(2)}] (n = 3, R = Me, 5; Et, 6; CH(2)Ph, 7; CH(2)C(6)H(4)Cl-p, 8; n = 5, R = Me, 13; Et, 14; CH(2)Ph, 15; CH(2)C(6)H(4)Cl-p, 16) in excellent to good (95-80%) isolated yields. The reduction of the Pt(IV) complexes 9-16 with the ylide Ph(3)P=CHCO(2)Me allows the synthesis of Pt(II) species 1-8. The compounds 1-16 were characterized by elemental analyses (C, H, N), FAB-MS, IR, (1)H, (13)C{(1)H}, and (31)P{(1)H} NMR (the latter for the anionic type complexes 5-8 and 13-16) and by X-ray crystallography for the Pt(II) (cis-1, cis-2, and trans-4) and Pt(IV) (15) species. Kinetic studies of addition of R(2)NOH (R = CH(2)C(6)H(4)Cl-p) to complexes [Ph(3)PCH(2)Ph][Pt(II)Cl(3)(EtCN)] and [Ph(3)PCH(2)Ph][Pt(IV)Cl(5)(EtCN)] by the (1)H NMR technique revealed that both reactions are first order in (p-ClC(6)H(4)CH(2))(2)NOH and Pt(II) or Pt(IV) complex, the second-order rate constant k(2) being three orders of magnitude larger for the Pt(IV) complex. The reactions are intermolecular in nature as proved by the independence of k(2) on the concentrations of added EtC triple bond N and Cl(-). These data and the calculated values of Delta H++ and Delta S++ are consistent with the mechanism involving the rate-limiting nucleophilic attack of the oxygen of (p-ClC(6)H(4)CH(2))(2)NOH at the sp-carbon of the C triple bond N bond followed by a fast proton migration.  相似文献   

4.
A Rh-catalyzed, homogeneous hydrogenation of the imine, PhCH(2)N=CHPh, is shown to involve a Rh-imine-amine species that subsequently activates H(2), the amine (benzylamine) being formed via a Rh-catalyzed hydrolysis of the imine by adventitious water. The imine-amine complex, cis-(Rh[P(p-tolyl)(3)](2)(PhCH(2)N=CHPh)(NH(2)CH(2)Ph))PF(6) (2b), is structurally characterized, and the solution (1)H NMR data reveal inequivalent NH(2) protons.  相似文献   

5.
Pt(II)-coordinated NCNR'(2) species are so highly activated towards 1,3-dipolar cycloaddition (DCA) that they react smoothly with the acyclic nitrones ArCH=N(+)(O(-))R' (Ar/R' = C(6)H(4)Me-p/Me; C(6)H(4)OMe-p/CH(2)Ph) in the Z-form. Competitive reactivity study of DCA between trans-[PtCl(2)(NCR)(2)] (R = Ph and NR'(2)) species and the acyclic nitrone 4-MeC(6)H(4)CH=N(+)(O(-))Me demonstrates comparable reactivity of the coordinated NCPh and NCNR'(2), while alkylnitrile ligands do not react with the dipole. The reaction between trans-[PtCl(2)(NCNR'(2))(2)] (R'(2) = Me(2), Et(2), C(5)H(10)) and the nitrones proceed as consecutive two-step intermolecular cycloaddition to give mono-(1a-d) and bis-2,3-dihydro-1,2,4-oxadiazole (2a-d) complexes (Ar/R' = p-tol/Me: R'(2) = Me(2)a, R'(2) = Et(2)b, R'(2) = C(5)H(10)c; Ar/R' = p-MeOC(6)H(4)/CH(2)Ph: R'(2) = Me(2)d). All complexes were characterized by elemental analyses (C, H, N), high resolution ESI-MS, IR, (1)H and (13)C{(1)H} NMR spectroscopy. The structures of trans-1b, trans-2a, trans-2c, and trans-2d were determined by single-crystal X-ray diffraction. Metal-free 5-NR'(2)-2,3-dihydro-1,2,4-oxadiazoles 3a-3d were liberated from the corresponding (dihydrooxadiazole)(2)Pt(II) complexes by treatment with excess NaCN and the heterocycles were characterized by high resolution ESI(+)-MS, (1)H and (13)C{(1)H} spectroscopy.  相似文献   

6.
The reactions of acrylonitrile (AN) with "L(2)PdMe+" species were investigated; (L(2) = CH(2)(N-Me-imidazol-2-yl)(2) (a, bim), (p-tolyl)(3)CCH(N-Me-imidazol-2-yl)(2) (b, Tbim), CH(2)(5-Me-2-pyridyl)(2) (c, CH(2)py'(2)), 4,4'-Me(2)-2,2'-bipyridine (d), 4,4'-(t)Bu(2)-2,2'-bipyridine (e), (2,6-(i)Pr(2)-C(6)H(3))N=CMeCMe=N(2,6-(i)Pr(2)-C(6)H(3)) (f)). [L(2)PdMe(NMe(2)Ph)][B(C(6)F(5))(4)] (2a-c) and [{L(2)PdMe}(2)(mu-Cl)][B(C(6)F(5))(4)] (2d-f) react with AN to form N-bound adducts L(2)Pd(Me)(NCCH=CH(2))(+) (3a-f). 3a-e undergo 2,1 insertion to yield L(2)Pd{CH(CN)Et}+, which form aggregates [L(2)Pd{CH(CN)Et}](n)(n)(+) (n = 1-3, 4a-e) in which the Pd units are proposed to be linked by PdCHEtCN- - -Pd bridges. 3f does not insert AN at 23 degrees C. 4a-e were characterized by NMR, ESI-MS, IR and derivatization to L(2)Pd{CH(CN)Et}(PR(3))+ (R = Ph (5a-e), Me (6a-c)). 4a,b react with CO to form L(2)Pd{CH(CN)Et}(CO)+ (7a,b). 7a reacts with CO by slow reversible insertion to yield (bim)Pd{C(=O)CH(CN)Et}(CO)+ (8a). 4a-e do not react with ethylene. (Tbim)PdMe+ coordinates AN more weakly than ethylene, and AN insertion of 3b is slower than ethylene insertion of (Tbim)Pd(Me)(CH(2)=CH(2))(+) (10b). These results show that most important obstacles to insertion polymerization or copolymerization of AN using L(2)PdR+ catalysts are the tendency of L(2)Pd{CH(CN)CH(2)R}+ species to aggregate, which competes with monomer coordination, and the low insertion reactivity of L(2)Pd{CH(CN)CH(2)R}(substrate)+ species.  相似文献   

7.
Reactions of the complex [MoCl(eta(3)-C(3)H(4)-Me-2)(CO)(2)(phen)] (1) (phen=1,10-phenanthroline) with potassium arylamides were used to synthesize the amido complexes [Mo(N(R)Ar)(eta(3)-C(3)H(4)-Me-2)(CO)(2)(phen)] (R=H, Ar=Ph, 2 a; R=H, Ar=p-tolyl, 2 b; R=Me, Ar=Ph; 2 c). For 2 b the Mo-N(amido) bond length (2.105(4) A) is consistent with it being a single bond, with which the metal attains an 18-electron configuration. The reaction of 2 b with HOTf affords the amino complex [Mo(eta(3)-C(3)H(4)-Me-2)(NH(2)(p-tol))(CO)(2)(phen)]OTf (3-OTf). Treatment of 3-OTf with nBuLi or KN(SiMe(3))(2) regenerates 2 b. The new amido complexes react with CS(2), arylisothiocyanates and maleic anhydride. A single product corresponding to the formal insertion of the electrophile into the Mo-N(amido) bond is obtained in each case. For maleic anhydride, ring opening accompanied the formation of the insertion product. The reaction of 2 b with maleimide affords [Mo(eta(3)-C(3)H(4)-Me-2)[NC(O)CH=CHC(O)](CO)(2)(phen)] (7), which results from simple acid-base metathesis. The reaction of 2 b with (p-tol)NCO affords [[Mo(eta(3)-C(3)H(4)-Me-2)(CO)(2)(phen)](2)(eta(2)-MoO(4))] (8), which corresponds to oxidation of one third of the metal atoms to Mo(VI). Complex 8 was also obtained in the reactions of 2 b with CO(2) or the lactide 3,6-dimethyl-1,4-dioxane-2,5-dione. The structures of the compounds 2 b, 3-OTf, [Mo(eta(3)-C(3)H(4)-Me-2)[SC(S)(N(H)Ph)](CO)(2)(phen)] (4), [Mo(eta(3)-C(3)H(4)-Me-2)[SC(N(p-tol))(NH(p-tol))](CO)(2)(phen)] (5 a), and [Mo(eta(3)-C(3)H(4)-Me-2)[OC(O)CH=CHC(O)(NH(p-tol))](CO)(2)(phen)] (6), 7, and 8 (both the free complex and its N,N'-di(p-tolyl)urea adduct) were determined by X-ray diffraction.  相似文献   

8.
The tailoring reaction of the two adjacent nitrile ligands in cis-[PtCl(2)(RCN)(2)] (R = Me, Et, CH(2)Ph, Ph) and [Pt(tmeda)(EtCN)(2)][SO(3)CF(3)](2) (8.(OTf)(2); tmeda = N,N,N',N'-tetramethylethylenediamine) upon their interplay with N,N'-diphenylguanidine (DPG; NH=C(NHPh)(2)), in a 1:2 molar ratio gives the 1,3,5-triazapentadiene complexes [PtCl(2){NHC(R)NHC(R)=NH}] (1-4) and [Pt(tmeda){NHC(Et)NHC(Et)NH}][SO(3)CF(3)](2) (10.(OTf)(2)), respectively. In contrast to the reaction of 8.(OTf)(2) with NH=C(NHPh)(2), interaction of 8.(OTf)(2) with excess gaseous NH(3) leads to formation of the platinum(II) bis(amidine) complex cis-[Pt(tmeda){NH=C(NH(2))Et}(2)][SO(3)CF(3)](2) (9.(OTf)(2)). Treatment of trans-[PtCl(2)(RCN)(2)] (R = Et, CH(2)Ph, Ph) with 2 equiv of NH=C(NHPh)(2) in EtCN (R = Et) and CH(2)Cl(2) (R = CH(2)Ph, Ph) solutions at 20-25 degrees C leads to [PtCl{NH=C(R)NC(NHPh)=NPh}(RCN)] (11-13). When any of the trans-[PtCl(2)(RCN)(2)] (R = Et, CH(2)Ph, Ph) complexes reacts in the corresponding nitrile RCN with 4 equiv of DPG at prolonged reaction time (75 degrees C, 1-2 days), complexes containing two bidentate 1,3,5-triazapentadiene ligands, i.e. [Pt{NH=C(R)NC(NHPh)=NPh}(2)] (14-16), are formed. Complexes 14-16 exhibit strong phosphorescence in the solid state, with quantum yields (peak wavelengths) of 0.39 (530 nm), 0.61 (460 nm), and 0.74 (530 nm), respectively. The formulation of the obtained complexes was supported by satisfactory C, H, and N elemental analyses, in agreement with FAB-MS, ESI-MS, IR, and (1)H and (13)C{(1)H} NMR spectra. The structures of 1, 2, 4, 11, 13, 14, 9.(picrate)(2), and 10.(picrate)(2) were determined by single-crystal X-ray diffraction.  相似文献   

9.
Treatment of trans-[PtCl(4)(RCN)(2)](R = Me, Et) with the hydrazone oximes MeC(=NOH)C(R')=NNH(2)(R' = Me, Ph) at 45 degrees C in CH(2)Cl(2) led to the formation of trans-[PtCl(4)(NH=C(R)ON=C(Me)C(R')=NNH(2))(2)](R/R' = Me/Ph 1, Et/Me 2, Et/Ph 3) due to the regioselective OH-addition of the bifunctional MeC(=NOH)C(R')=NNH(2) to the nitrile group. The reaction of 3 and Ph(3)P=CHCO(2)Me allows the formation of the Pt(II) complex trans-[PtCl(2)(NH=C(Et)ON=C(Me)C(Ph)=NNH(2))2](4). In 4, the imine ligand was liberated by substitution with 2 equivalents of bis(1,2-diphenylphosphino)ethane (dppe) in CDCl(3) to give, along with the free ligand, the solid [Pt(dppe)(2)]Cl(2). The free iminoacyl hydrazone, having a restricted life-time, decomposes at 20-25 degrees C in about 20 h to the parent organonitrile and the hydrazone oxime. The Schiff condensation of the free NH(2) groups of 4 with aromatic aldehydes, i.e. 2-OH-5-NO(2)-benzaldehyde and 4-NO(2)-benzaldehyde, brings about the formation of the platinum(II) complexes trans-[PtCl(2)(NH=C(Et)ON=C(Me)C(Ph)=NN=CH(C(6)H(3)-2-OH-5-NO(2))2](5) and trans-[PtCl(2)(NH=C(Et)ON=C(Me)C(Ph)=NN=CH(C(6)H(4)-4-NO(2))2](6), respectively, containing functionalized remote peripherical groups. Metallization of 5, which can be considered as a novel type of metallaligand, was achieved by its reaction with M(OAc)(2).nH(2)O (M = Cu, n= 2; M = Co, n= 4) in a 1:1 molar ratio furnishing solid heteronuclear compounds with composition [Pt]:[M]= 1:1. The complexes were characterized by C, H, N elemental analyses, FAB+ mass-spectrometry, IR, 1H, 13C[1H] and (195)Pt NMR spectroscopies; X-ray structures were determined for 3, 4 and 5.  相似文献   

10.
Sequential reaction of two different hemilabile ligands (Ph(2)PCH(2)CH(2)X)(2)Ar (X = S, Ar = C(6)H(4) or C(6)(CH(3))(4); X = NCH(3), Ar = C(6)H(4); X = O, Ar = 9,10-C(14)H(8)) with a Rh(I) metal center resulted in the formation of heteroligated metallomacrocycles in high yield. The specific reaction conditions for each pair of hemilabile ligands are discussed. The solid-state structure of [[1,4-(Ph(2)PCH(2)CH(2)S)(2)C(6)H(4)]-[1,4-(Ph(2)PCH(2)CH(2)S)(2)C(6)(CH(3))(4)]Rh(2)](BF(4))(2), as determined by X-ray crystallography, is presented.  相似文献   

11.
Reactions of [Fe(TPFPP)] (TPFPP = meso-tetrakis(pentafluorophenyl)porphyrinato dianion) with diazo compounds N(2)C(Ph)R (R = Ph, CO(2)Et, CO(2)CH(2)CH=CH(2)) afforded [Fe(TPFPP)(C(Ph)R)] (R = Ph (1), CO(2)Et (2), CO(2)CH(2)CH=CH(2) (3)) in 65-70% yields. Treatment of 1 with N-methylimidazole (MeIm) gave the adduct [Fe(TPFPP)(CPh(2))(MeIm)] (4) in 65% yield. These new iron porphyrin carbene complexes were characterized by NMR and UV-vis spectroscopy, mass spectrometry, and elemental analyses. X-ray crystal structure determinations of 1.0.5C(6)H(6).0.5CH(2)Cl(2) and 4 reveal Fe=CPh(2) bond lengths of 1.767(3) (1) and 1.827(5) A (4), together with large ruffling distortions of the TPFPP macrocycle. Complexes 2 and 4 are reactive toward styrene, affording the corresponding cyclopropanes in 82 and 53% yields, respectively. Complex 1 is an active catalyst for both intermolecular cyclopropanation of styrenes with ethyl diazoacetate and intramolecular cyclopropanation of allylic diazoacetates. Reactions of 2 and 4 with cyclohexene or cumene produced allylic or benzylic C-H insertion products in up to 83% yield.  相似文献   

12.
The reaction between the nitrile complex trans-[PtCl(4)(EtCN)(2)] and benzohydroxamic acids RC(6)H(4)C([double bond]O)NHOH (R = p-MeO, p-Me, H, p-Cl, o-HO) proceeds smoothly in CH(2)Cl(2) at approximately 45 degrees C for 2-3 h (sealed tube) or under focused 300 W microwave irradiation for approximately 15 min at 50 degrees C giving, after workup, good yields of the imino complexes [PtCl(4)[NH[double bond]C(Et)ON[double bond]C(OH)(C(6)H(4)R)](2)] which derived from a novel metalla-Pinner reaction. The complexes [PtCl(4)[NH[double bond]C(Et)ON[double bond]C(OH)(C(6)H(4)R)](2)] were characterized by elemental analyses (C, H, N), FAB mass spectrometry, and IR and (1)H and (13)C[(1)H] spectroscopies, and [PtCl(4)[NH[double bond]C(Et)ON[double bond]C(OH)(Ph)](2)] (as the bis-dimethyl sulfoxide solvate), by X-ray single-crystal diffraction. The latter disclosed its overall trans-configuration with the iminoacyl species in the hydroximic tautomeric form in E-configuration which is held by N[bond]H...N hydrogen bond between the imine [double bond]NH atom and the hydroximic N atom.  相似文献   

13.
2-Phosphanylethylcyclopentadienyl lithium compounds, Li[C(5)R'(4)(CH(2))(2)PR(2)] (R = Et, R' = H or Me, R = Ph, R' = Me), have been prepared from the reaction of spirohydrocarbons C(5)R'(4)(C(2)H(4)) with LiPR(2). C(5)Et(4)HSiMe(2)CH(2)PMe(2), was prepared from reaction of Li[C(5)Et(4)] with Me(2)SiCl(2) followed by Me(2)PCH(2)Li. The lithium salts were reacted with [RhCl(CO)(2)](2), [IrCl(CO)(3)] or [Co(2)(CO)(8)] to give [M(C(5)R'(4)(CH(2))(2)PR(2))(CO)] (M = Rh, R = Et, R' = H or Me, R = Ph, R' = Me; M = Ir or Co, R = Et, R' = Me), which have been fully characterised, in many cases crystallographically as monomers with coordination of the phosphorus atom and the cyclopentadienyl ring. The values of nu(CO) for these complexes are usually lower than those for the analogous complexes without the bridge between the cyclopentadienyl ring and the phosphine, the exception being [Rh(Cp'(CH(2))(2)PEt(2))(CO)] (Cp' = C(5)Me(4)), the most electron rich of the complexes. [Rh(C(5)Et(4)SiMe(2)CH(2)PMe(2))(CO)] may be a dimer. [Co(2)(CO)(8)] reacts with C(5)H(5)(CH(2))(2)PEt(2) or C(5)Et(4)HSiMe(2)CH(2)PMe(2) (L) to give binuclear complexes of the form [Co(2)(CO)(6)L(2)] with almost linear PCoCoP skeletons. [Rh(Cp'(CH(2))(2)PEt(2))(CO)] and [Rh(Cp'(CH(2))(2)PPh(2))(CO)] are active for methanol carbonylation at 150 degrees C and 27 bar CO, with the rate using [Rh(Cp'(CH(2))(2)PPh(2))(CO)] (0.81 mol dm(-3) h(-1)) being higher than that for [RhI(2)(CO)(2)](-) (0.64 mol dm(-3) h(-1)). The most electron rich complex, [Rh(Cp'(CH(2))(2)PEt(2))(CO)] (0.38 mol dm(-3) h(-1)) gave a comparable rate to [Cp*Rh(PEt(3))(CO)] (0.30 mol dm(-3) h(-1)), which was unstable towards oxidation of the phosphine. [Rh(Cp'(CH(2))(2)PEt(2))I(2)], which is inactive for methanol carbonylation, was isolated after the methanol carbonylation reaction using [Rh(Cp'(CH(2))(2)PEt(2))(CO)]. Neither of [M(Cp'(CH(2))(2)PEt(2))(CO)] (M = Co or Ir) was active for methanol carbonylation under these conditions, nor under many other conditions investigated, except that [Ir(Cp'(CH(2))(2)PEt(2))(CO)] showed some activity at higher temperature (190 degrees C), probably as a result of degradation to [IrI(2)(CO)(2)](-). [M(Cp'(CH(2))(2)PEt(2))(CO)] react with MeI to give [M(Cp'(CH(2))(2)PEt(2))(C(O)Me)I] (M = Co or Rh) or [Ir(Cp'(CH(2))(2)PEt(2))Me(CO)]I. The rates of oxidative addition of MeI to [Rh(C(5)H(4)(CH(2))(2)PEt(2))(CO)] and [Rh(Cp'(CH(2))(2)PPh(2))(CO)] are 62 and 1770 times faster than to [Cp*Rh(CO)(2)]. Methyl migration is slower, however. High pressure NMR studies show that [Co(Cp'(CH(2))(2)PEt(2))(CO)] and [Cp*Rh(PEt(3))(CO)] are unstable towards phosphine oxidation and/or quaternisation under methanol carbonylation conditions, but that [Rh(Cp'(CH(2))(2)PEt(2))(CO)] does not exhibit phosphine degradation, eventually producing inactive [Rh(Cp'(CH(2))(2)PEt(2))I(2)] at least under conditions of poor gas mixing. The observation of [Rh(Cp'(CH(2))(2)PEt(2))(C(O)Me)I] under methanol carbonylation conditions suggests that the rhodium centre has become so electron rich that reductive elimination of ethanoyl iodide has become rate determining for methanol carbonylation. In addition to the high electron density at rhodium.  相似文献   

14.
Photochemical reaction of [CH2(eta5-C5H4)2][Rh(C2H4)2]2 1 with dmso led to the stepwise formation of [CH2(eta5-C5H4)2][Rh(C2H4)2][Rh(C2H4)(dmso)] 2a and [CH2(eta5-C5H4)2][Rh(C2H4)(dmso)]2 2b. Photolysis of 1 with vinyltrimethylsilane ultimately yields three isomeric products of [CH2(eta5-C5H4)2][Rh(CH2=CHSiMe3)2]2, 3a, 3b and 3c which are differentiated by the relative orientations of the vinylsilane. When this reaction is undertaken in d6-benzene, H/D exchange between the solvent and the alpha-proton of the vinylsilane is revealed. In addition evidence for two isomers of the solvent complex [CH2(eta5-C5H4)2][Rh(C2H4)2][Rh(C2H4)(eta2-toluene)] was obtained in these and related experiments when the photolysis was completed at low temperature without substrate, although no evidence for H/D exchange was observed. Photolysis of 1 with Et3SiH yielded the sequential substitution products [CH2(eta5-C5H4)2][Rh(C2H4)2][Rh(C2H4)(SiEt3)H] 4a, [CH2(eta5-C5H4)2][Rh(C2H4)(SiEt3)H]2 4b, [CH2(eta5-C5H4)2][Rh(C2H4)(SiEt3)H][Rh(SiEt3)2(H)2] 4c and [CH2(eta5-C5H4)2][Rh(SiEt3)2(H)2]2 4d; deuteration of the alpha-ring proton sites, and all the silyl protons, of 4d was demonstrated in d6-benzene. This reaction is further complicated by the formation of two Si-C bond activation products, [CH2(eta5-C5H4)2][RhH(mu-SiEt2)]2 5 and [CH2(eta5-C5H4)2][(RhEt)(RhH)(mu-SiEt2)2] 6. Complex 5 was also produced when 1 was photolysed with Et2SiH2. When the photochemical reactions with Et3SiH were repeated at low temperatures, two isomers of the unstable C-H activation products, the vinyl hydrides [CH2(eta5-C5H4)2][{Rh(SiEt3)H}{Rh(SiEt3)}(mu-eta1,eta2-CH=CH2)] 7a and 7b, were obtained. Thermally, 4c was shown to form the ring substituted silyl migration products [(eta5-C5H4)CH2(C5H3SiEt3)][Rh(SiEt3)2(H)2]2 8 while 4b formed [CH2(C5H3SiEt3)2][Rh(SiEt3)2(H)2]2 (9a and 9b) upon reaction with excess silane. The corresponding photochemical reaction with Me3SiH yielded the expected products [CH2(eta5-C5H4)2][Rh(C2H4)2][Rh(C2H4)(SiMe3)H] 10a, [CH2(eta5-C5H4)2][Rh(C2H4)(SiMe3)H]2 10b, [CH2(eta5-C5H4)2][Rh(C2H4)(SiMe3)H][Rh(SiMe3)2(H)2] 10c and [CH2(eta5-C5H4)2][Rh(SiMe3)2(H)2]2 10d. However, three Si-C bond activation products, [CH2(eta5-C5H4)2][(RhMe)(RhH)(mu-SiMe2)2] 11, [CH2(eta5-C5H4)2][(Rh{SiMe3})(RhMe)(mu-SiMe2)2] 12 and [CH2(eta5-C5H4)2][(Rh{SiMe3})(RhH)(mu-SiMe2)2] 13 were also obtained in these reactions.  相似文献   

15.
The synthesis and reactivity of the cationic niobium and tantalum monomethyl complexes [(BDI)MeM(N(t)Bu)][X] (BDI = [Ar]NC(CH(3))CHC(CH(3))N[Ar], Ar = 2,6-(i)Pr(2)C(6)H(3); M = Nb, Ta; X = MeB(C(6)F(5))(3), B(C(6)F(5))(4)] was investigated. The cationic alkyl complexes failed to irreversibly bind CO but formed phosphine-trapped acyl complexes [(BDI)(R(3)PC(O)Me)M(N(t)Bu)][B(C(6)F(5))(4)] (R = Et, Cy) in the presence of a combination of trialkylphosphines and CO. Treatment of the monoalkyl cationic Nb complex with XylNC (Xyl = 2,6-Me(2)-C(6)H(3)) resulted in irreversible formation of the iminoacyl complex [(BDI)(XylN[double bond, length as m-dash]C(Me))Nb(N(t)Bu)][B(C(6)F(5))(4)], which did not bind phosphines but would add a methide group to the iminoacyl carbon to provide the known ketimine complex (BDI)(XylNCMe(2))Nb(N(t)Bu). Further stoichiometric chemistry explored i) migratory insertion reactions to form new alkoxide, amidinate, and ketimide complexes; ii) protonolysis reactions with Ph(3)SiOH to form thermally robust cationic siloxide complexes; and iii) catalytic high-density polyethylene formation mediated by the cationic Nb methyl complex.  相似文献   

16.
The complexes cis,trans,cis-[Rh(H)(2)(PPh(3))(2)(NH(2)CH(2)Ph)(2)]PF(6) (1) and cis-[Rh(PPh(3))(2)(NH(2)CH(2)Ph)(2)]PF(6) (2) are characterized by X-ray crystallography; the structures are maintained in CH(2)Cl(2) where the species are in equilibrium under H(2). In MeOH and in acetone, loss of amine and/or H(2) can occur. Traces of 1 and 2 are present after a Rh-catalyzed H(2)-hydrogenation of PhCH=NCH(2)Ph in MeOH, where the amine is generated by hydrolysis of the imine substrate through adventitious water. The findings are relevant to catalyst poisoning in the catalytic process.  相似文献   

17.
The first series of Rh(I) distibine complexes with organometallic co-ligands is described, including the five-coordinate [Rh(cod)(distibine)Cl], the 16-electron planar cations [Rh(cod)(distibine)]BF4 and [Rh{Ph2Sb(CH2)3SbPh2}2]BF4 and the five-coordinate [Rh(CO)(distibine)2][Rh(CO)2Cl2] (distibine=R2Sb(CH2)3SbR2, R=Ph or Me, and o-C6H4(CH2SbMe2)2). The corresponding Ir(I) species [Ir(cod)(distibine)]BF4 and [Ir{Ph2Sb(CH2)3SbPh2}2]BF4 have also been prepared. The complexes have been characterised by 1H and 13C{1H} NMR and IR spectroscopy, electrospray mass spectrometry and microanalysis. The crystal structure of the anion exchanged [Rh(CO){Ph2Sb(CH2)3SbPh2}2]PF(6).3/4CH2Cl2 is also described. The methyl-substituted distibine complexes are less stable than the complexes of Ph2Sb(CH2)3SbPh2, with C-Sb fission occurring in some of the complexes of the former. The salts [Rh(CO){Ph2Sb(CH2)3SbPh2}2]PF6 and [Rh{Ph2Sb(CH2)3SbPh2}2]BF4 undergo oxidative addition with Br2 to give the known [RhBr2{Ph2Sb(CH2)3SbPh2}2]+, while using HCl gives the same hydride complex from both precursors, which is tentatively assigned as [RhHCl2{Ph2Sb(CH2)3SbPh2}]. An unexpected further Rh(III) product from this reaction, trans-[RhCl2{Ph2Sb(CH2)3SbPh2}{PhClSb(CH2)3SbClPh}]Cl, was identified by a crystal structure analysis and represents the first structurally characterised example of a chlorostibine coordinated to a metal. [Rh{Ph2Sb(CH2)3SbPh2}2]BF4 reacts with CO to give [Rh(CO){Ph2Sb(CH2)3SbPh2}2]BF4 initially, and upon further exposure this species undergoes further reversible carbonylation to give a cis-dicarbonyl species thought to be [Rh(CO)2{Ph2Sb(CH2)3SbPh2}{kappa1Sb-Ph2Sb(CH2)3SbPh2}]BF4 which converts back to the monocarbonyl complex when the CO atmosphere is replaced with N2.  相似文献   

18.
The complex [Rh(kappa(3)-N,N,N-pybox)(CO)][PF(6)] (1) has been prepared by reaction of the precursor [Rh(mu-Cl)(eta(2)-C(2)H(4))(2)](2), 2,6-bis[4'(S)-isopropyloxazolin-2'-yl]pyridine (pybox), CO, and NaPF(6). Complex 1 reacts with monodentate phosphines to give the complexes [Rh(kappa(1)-N-pybox)(CO)(PR(3))(2)][PF(6)] (R(3) = MePh(2) (2), Me(2)Ph (3), (C(3)H(5))Ph(2) (4)), which show a previously unseen monodentate coordination of pybox. Complex 1 undergoes oxidative addition reactions with iodine and CH(3)I leading to the complexes [RhI(R)(kappa(3)-N,N,N-pybox)(CO)][PF(6)] (R = I (5); R = CH(3) (6)). Furthermore, a new allenyl Rh(III)-pybox complex of formula [Rh(CH=C=CH(2))Cl(2)(kappa(3)-N,N,N-pybox)] (7) has been synthesized by a one-pot reaction from [Rh(mu-Cl)(eta(2)-C(2)H(4))(2)](2), pybox, and an equimolar amount of propargyl chloride.  相似文献   

19.
The cyclometallated complexes [MCl(C^N)(ring)] (HC^N = 2-phenylpyrazole, M = Ir, Rh ring = Cp*; M = Ru, ring = p-cymene) readily undergo insertion reactions with RC≡CR (R = CO(2)Me, Ph) to give mono insertion products, the rhodium complex also reacts with PhC≡CH regiospecifically to give an analogous product. The products of the reactions of the cyclometallated imine complexes [MCl(C^N)Cp*] (HC^N = PhCH=NR, R = Ph, CH(2)CH(2)OMe, Me; M = Ir, Rh) with PhC≡CPh depend on the substituent R; when R = CH(2)CH(2)OMe a monoinsertion is observed, however for R = Me the initial insertion product is unstable, undergoing reductive elimination with loss of the organic fragment, and for R = Ph no metal-containing product is isolated. With PhC≡CH the cyclometallated imine complexes can give mono or di-insertion products. The implications for catalytic synthesis of carbo- and heterocycles by a tandem C-H activation, alkyne insertion mechanism are discussed.  相似文献   

20.
The reactivity of W(NPh)(o-(Me3SiN)2C6H4)(py)2 and W(NPh)(o-(Me3SiN)2C6H4)(pic)2 (py=pyridine; pic=4-picoline) with unsaturated substrates has been investigated. Treatment of W(NPh)(o-(Me3SiN)2C6H4)(py)2 with diphenylacetylene or 2,3-dimethyl-1,3-butadiene generates W(NPh)(o-(Me3SiN)2C6H4)(eta2-PhCCPh) and W(NPh)(o-(Me3SiN)2C6H4)(eta4-CH2=C(Me)C(Me)=CH2), respectively, while the addition of ethylene to W(NPh)(o-(Me3SiN)2C6H4)(py)2 generates the known metallacycle W(NPh)(o-(Me3SiN)2C6H4)(CH2CH2CH2CH2). The addition of 2 equiv of acetone to W(NPh)(o-(Me3SiN)2C6H4)(pic)2 provides the azaoxymetallacycle W(NPh)(o-(Me3SiN)2C6H4)(OCH(Me)2)(OC(Me)2-o-C5H3N-p-Me), the result of acetone insertion into the ortho C-H bond of picoline. Similarily, the addition of 2 equiv of RC(O)H [R=Ph, tBu] to W(NPh)(o-(Me3SiN)2C6H4)(py)2 generates W(NPh)(o-(Me3SiN)2C6H4)(OCH2R)(OCHR-o-C5H4N) [R=Ph, tBu,]. In contrast, reaction between W(NPh)(o-(Me3SiN)2C6H4)(py)2 and 2-pyridine carboxaldehyde yields the diolate W(NPh)(o-(Me3SiN)2C6H4)(OCH(C5H4N)CH(C5H4N)O). The synthesis of W(NPh)(o-(Me3SiN)2C6H4)(PMe3)(py)(eta2-OC(H)C6H4-p-Me), formed by the addition of p-tolualdehyde to a mixture of W(NPh)(o-(Me3SiN)2C6H4)(py)2 and PMe3, suggests that an eta2-aldehyde intermediate is involved in the formation of the azaoxymetallacycle, while the isolation of W(NPh)(o-(Me3SiN)2C6H4)(Cl)(OC(Me)(CMe3)-o-C5H4N), formed by the reaction of pinacolone with W(NPh)(o-(Me3SiN)2C6H4)(py)2, in the presence of adventitious CH2Cl2, suggests that the reaction proceeds via the hydride W(NPh)(o-(Me3SiN)2C6H4)(H)(OC(Me)(CMe3)-o-C5H4N).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号