首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Phase relations in the CaO-Bi2O3-B2O3 system have been investigated by X-ray powder diffraction and differential thermal analyses, and the isothermal section at 600°C has been constructed. The formation of ternary compounds at the component ratios 1CaO: 1Bi2O3: 1B2O3 (CaBi2B2O7) and 1CaO: 1Bi2O3: 2B2O3 (CaBi2B4O10) has been established X-ray diffraction characteristics of these phases are presented.  相似文献   

2.
Phase relations in the MgO-Bi2O3-B2O3 system have been investigated by X-ray powder diffraction analysis and DTA. No ternary compounds have been found in the system. Quasi-binary sections have been the 600°C determined and isothermal section of the system has been constructed.  相似文献   

3.
The influence of the structures of binary compounds on the formation of ternary mixed-anion compounds—borotungstates—in ternary Ln2O3-B2O3-WO3 systems was studied. The structures of borotungstates either inherit the predominant type of cationic network from the structures of the binary compounds (anisotropic cationic networks in Ln (BO2)(WO4)) or represent a sum of equivalent anisotropic and isotropic cationic networks, forming combined cationic networks (in Ln3BWO9). In the lanthanide series, the ranges of existence of borotungstates coincide with the ranges of existence of the structure types most abundant in the binary compounds.  相似文献   

4.
Thermal and chemical durability studies of the phosphate glasses belonging to the binary MoO3-P2O5 and the ternary K2O-MoO3-P2O5 systems are reported. The chemical resistant attack tests carried out on the free alkaline MoO3-P2O5 glasses show that the glass associated with the P/Mo ratio 2 has the high chemical durability. It shows also a high glass transition temperature value. The above findings are interpreted in terms of the cross-link density of the glasses and the strength of the M-O bonds (M=P, Mo). The influence of K2O addition on the properties (density, T g, durability) of this binary high water resistant glass is studied. It is found that the chemical durability along with the other physical properties are reduced by the incroporation of K2O in the glass matrix. The results were explained by assuming the formation of non-bridging oxygens and weak bonds. The mechanism of the dissolution of these glasses is proposed.  相似文献   

5.
A method has been developed for the preparation of homogeneous moisture-resistant glasses with the composition Li2O-B2O3-P2O5-CaF2 : Ce3+-Gd3+. Energy transfer from Gd3+ to Ce3+ was noted in a study of the radioluminescence spectra of these samples using 241Am as the excitation source (60 keV). The decay time of the Ce3+ radioluminescence in the glasses obtained was 20-25 ns.  相似文献   

6.
Shrinkage of porous glasses on heating from 20 to 800°C was studied and temperature dependences of the viscosity in the range of 1011–1013 P were determined for quartzoid (sintered) glasses based on five glasses with different compositions in the Na2O-B2O3-SiO2 system. The shrinkage of porous glasses and the viscosity of quartzoid glasses were analyzed in relation to their composition and temperature of preliminary thermal treatment.  相似文献   

7.
Thermal behaviour of the glass series (100-x)[50ZnO-10B2O3-40P2O5xSb2O3 (x=0-42 mol%) and (100-y)[60ZnO-10B2O3-30P2O5ySb2O3 (y=0-28 mol%) was investigated by DSC and TMA. The addition of Sb2O3 results in a decrease of the glass transition temperature and crystallization temperature in both compositional series. All glasses crystallize on heating in the temperature range of 522–632°C. Thermal expansion coefficient of the glasses monotonously increases with increasing Sb2O3 content in both series and varies within the range of 6.6–11.7 ppm °C−1. From changes of thermal capacity within the glass transition region it was concluded that with increasing Sb2O3 content the ‘fragility’ of the studied glasses increases.  相似文献   

8.
Differential scanning calorimetry (DSC) and thermomechanical analysis (TMA) were used to study the thermal behaviour of (50-x)Na2O-xTiO2-50P2O5 and 45Na2O-yTiO2-(55-y)P2O5 glasses. The addition of TiO2 to the starting glasses (x=0 and y=5 mol% TiO2) resulted in a nonlinear increase of glass transition temperature and dilatation softening temperature, whereas the thermal expansion coefficient decreased. All prepared glasses crystallize under heating within the temperature range of 300–610°C. The contribution of the surface crystallization mechanism over the internal one increases with increasing TiO2 content. With increasing TiO2 content the temperature of maximum nucleation rate is also gradually shifted from a value close to the glass transition temperature towards the crystallization temperature. X-ray diffraction measurements showed that the major compounds formed by glass crystallization were NaPO3, TiP2O7 and NaTi2(PO4)3. The chemical durability of the glasses without titanium oxide is very poor, but with the replacement of Na2O or P2O5 by TiO2, it increases sharply.  相似文献   

9.
Phase relations in the Y2O3-Ga2O3 system were studied by the anneal-and-quench technique in air within 1000–2300°C, and a phase diagram was plotted. Three compounds were found to form: Y3GaO6, Y4Ga2O9, and Y3Ga5O12; the temperature and concentration bounds of stability were determined for these compounds. Indexing results for Y3GaO6 are given.  相似文献   

10.
The processes of nucleation of Li2O-Al2O3-SiO2 glasses with TiO2 and TiO2+ZrO2 as nucleating agents were discussed. The DTA peak temperature and DTA peak height shown a strong dependence on the nucleation temperature in the glass with TiO2, while in the glass with TiO2+ZrO2 this tendency was small. The optimum nucleation temperatures were 745 and 760°C for two glasses. It suggested that with TiO2+ZrO2 as nucleating agents, the crystallization had lower sensitivity for nucleation temperature, and the glass had higher nucleation efficiency than with TiO2.  相似文献   

11.
Glasses of the SiO2–P2O5–K2O–MgO–CaO–B2O3 system acting as nutrients carriers in the soil environment were synthesised by the melt-quenching technique. Thermal properties were studied using DTA/DSC methods and the influence of B2O3 and P2O5 content on thermal stability and crystallization process of these glasses was examined. The structure of the glass network was characterized by FTIR, 31P, and 11B MAS NMR. The chemical activity of the glasses in the 2 mass% citric acid solution was measured by the ICP-AES method. The analysis indicated that the formation of P–O–B units with chemically stable tetrahedral borate groups decreases the glass solubility in conditions simulating the soil environment.  相似文献   

12.
Processes of evaporation and thermodynamic properties of glasses and melts of the system MgO-B2O3-SiO2 in the range of 1550–1800 K were studied for the first time by high-temperature mass-spectrometry. The resulting activities and Gibbs energies of components and also corresponding excess values point to negative deviations from ideal behavior and to the absence of immiscibility fields in glasses and melts of the system under study in the studied temperatures and concentration intervals.  相似文献   

13.
Fluorescence and spectral hole burning properties of Eu3+ ions were studied in nanocrystals-precipitated SnO2-SiO2 glasses. The glasses were prepared to contain various amount of Eu2O3 using the sol-gel method, in which SnO2 nanocrystals were precipitated by heating in air. In the glasses containing Eu2O3 less than 1%, the Eu3+ ions were preferentially doped in the SnO2 nanocrystals and their fluorescence intensities were enhanced by the energy transfer due to the recombination of electrons and holes excited in SnO2 crystals. The SnO2 nanocrystals-precipitated glasses exhibited the persistent spectral holes with the depth of ∼25% of the total fluorescence intensities of the Eu3+ ions. With the increasing Eu2O3 concentration, the amount of SnO2 nanocrystals decreased and the Sn4+ ions formed the random glass structure together with the silica network. This structure change induced the fluorescence intensities and the hole depth to decrease.  相似文献   

14.
Due to the high specific capacities and environmental benignity, lithium-sulfur (Li-S) batteries have shown fascinating potential to replace the currently dominant Li-ion batteries to power portable electronics and electric vehicles. However, the shuttling effect caused by the dissolution of polysulfides seriously degrades their electrochemical performance. In this paper, Mn2O3 microcubes are fabricated to serve as the sulfur host, on top of which Al2O3 layers of 2 nm in thickness are deposited via atomic layer deposition (ALD) to form Mn2O3/S (MOS) @Al2O3 composite electrodes. The MOS@Al2O3 electrode delivers an excellent initial capacity of 1012.1 mAh g?1 and a capacity retention of 78.6% after 200 cycles at 0.5 C, and its coulombic efficiency reaches nearly 99%, giving rise to much better performance than the neat MOS electrode. These findings demonstrate the double confinement effect of the composite electrode in that both the porous Mn2O3 structure and the atomic Al2O3 layer serve as the spacious host and the protection layer of sulfur active materials, respectively, for significantly improved electrochemical performance of the Li-S battery.  相似文献   

15.
As the solubility is a direct measure of stability, this study compares the solubilities of ZnFe2O4, Fe3O4 and Fe2O3 in high temperature water. Through literature analysis and formula derivation, it is shown that it is reasonable to assume ZnFe2O4 and Fe(OH)3 coexist when ZnFe2O4 is dissolved in water. Results indicated that the solubility of ZnFe2O4 is much lower than that of Fe2O3 or Fe3O4. The low solubility of ZnFe2O4 indicates that it is more protectively stable as an anticorrosion phase. Moreover, the gap between the solubility of ZnFe2O4 and that of Fe3O4 or Fe2O3 was enlarged with an increase of temperature. This means that ZnFe2O4 is more protective at higher temperatures. Further analysis indicated that with the increase of temperature, the solubility of ZnFe2O4 changed little while those of Fe2O3 or Fe3O4 changed a lot. Little change of the solubility of ZnFe2O4 with increase of temperature showed that ZnFe2O4 is stable. The very low and constant solubility of ZnFe2O4 suggests that it is more protective than Fe2O3 and Fe3O4, especially in water at higher temperature.  相似文献   

16.
The thermodynamics of vaporization in the Bi2O3-Fe2O3 quasibinary system was studied by high-temperature mass-spectrometry. The partial pressures of the constituents of a saturated vapor over the system at 1100 K were determined. Based on the experimental data, the following parameters were calculated: the activities of the components of the Bi2O3-Fe2O3 system condensed phase, the standard enthalpies of some heterogeneous reactions, and standard enthalpies of formation and enthalpies of formation for crystalline BiFeO3 and Bi2Fe4O9 from individual oxides. An optimal temperature for the solid-phase synthesis of bismuth ferrites from simple oxides is recommended.  相似文献   

17.
In the Li2O-Ta2O5-TeO2 system, the boundaries of the glass region have been determined. The electrical and spectral properties of glasses and crystalline materials have been investigated.  相似文献   

18.
Reactions of an amino derivative of the closo-decaborate anion [1-B10H9NH3] with aromatic aldehydes afforded Schiff bases [1-B10H9NH=CHAr] (Ar=Ph, C6H4-2-OMe, or C6H4-4-NHCOMe). The reduction of the latter with sodium borohydride gave the corresponding benzylamino derivatives [1-B10H9NH2CH2Ar].Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 2004–2007, September, 2004.  相似文献   

19.
Al2O3-Cr2O3 solid solutions with 0, 4, 7, 10 and 20 mol% of corundum were synthesized using a high-pressure/high-temperature apparatus and characterized by X-ray powder diffraction. Calorimetric measurements were carried out using DSC-111 (Setaram). Heat capacity was measured by the enthalpy method in a temperature range of 260–340 K, near magnetic phase transition in pure Cr2O3 (305 K). Magnetic contribution into the heat capacity was derived and found to change irregularly with the composition.  相似文献   

20.
Macro-/mesoporous Al2O3 supports were prepared by using monodisperse polystyrene (PS) microspheres as a template. The pore volume and BET surface area of the Al2O3 supports increased considerably with increasing amounts of the PS microspheres; further investigation showed that PS template only increased the volume of macro-pores but did not change the volume of meso-pores or micro-pores. Macro-/mesoporous Re2O7/Al2O3 metathesis catalysts were prepared through loading Re2O7 onto the as-prepared macro-/mesoporous Al2O3 supports, and their catalytic performance was tested in a fixed-bed tubular reactor using the metathesis of normal butylenes as a probe reaction. The results showed that the prepared macro-/mesoporous Re2O7/Al2O3 catalyst had high activity with consistent selectivity; propylene and pentene accounted for more than 90 wt% of the metathesis products, while the amount of ethylene plus hexane was less than 10 wt%, the majority of which was hexane. These Re2O7/Al2O3 catalysts had not only higher activity, but also longer working life span and higher tolerance to carbon residues than conventional Re2O7/Al2O3 catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号