首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Characteristics of high Mach number compressible vortex ring generated at the open end of a short driver section shock tube is studied experimentally using high-speed laser sheet-based flow visualization. The formation mechanism and the evolution of counter rotating vortex ring (CRVR) formed ahead of the primary vortex ring are studied in details for shock Mach number (M) 1.7, with different driver section lengths. It has been observed that the strength of the embedded shock, which appears at high M, increases with time due to the flow expansion in the generating jet. Strength of the embedded shock also varies with radius; it is strong at smaller radii and weak at larger radii; hence, it creates a velocity gradient ahead of the embedded shock. At critical Mach number (M c ≥ 1.6), this shear layer rolls up and forms a counter rotating vortex ring due to Biot-Savart induction of the vortex sheet. For larger driver section lengths, the embedded shock and the resultant shear layer persists for a longer time, resulting in the formation of multiple CRVRs due to Kelvin–Helmholtz type instability of the vortex sheet. CRVRs roll over the periphery of the primary vortex ring; they move upstream due to their self-induced velocity and induced velocity imparted by primary ring, and interact with the trailing jet. Formation of these vortices depends strongly upon the embedded shock strength and the length of the generating jet. Primary ring diameter increases rapidly during the formation and the evolution of CRVR due to induced velocity imparted on the primary ring by CRVR. Induced velocity of CRVR also affects the translational velocity of the primary ring considerably.  相似文献   

2.
3.
An experimental study has been conducted on the effects of distance variation on the impingement process of compressible vortex rings on a stationary solid wall. An experimental incident Mach number of 1.61 was used. Qualitative and quantitative studies compared the impingement and interaction flow characteristics of a compressible vortex ring with a stationary, solid, smooth surface at three distances: 1.66, 3.33, and 5.00 inner diameters. The three distances corresponded to an under-developed vortex ring (1.66 inner diameters), a vortex ring at its development threshold (3.33 inner diameters), and a fully developed one (5.00 inner diameters). Qualitative schlieren results showed that the surface distance affected the shock/vortex interaction process along with the impingement process of the vortex ring and the flow structure of its trailing jet. Quantitative data were extrapolated to evaluate the propagation velocity of the vortex ring prior to impingement. The boundary layer thickness was also estimated. Particle image velocimetry studies showed the main and secondary vortices to have opposite vorticity, with the magnitude of the vorticity of the secondary vortices being approximately half of that of the main vortex. Surface pressure results reveal the symmetrical properties of the impinging flow, along with a direct correlation between the maximum pressure measured at the instant the vortex ring impingement and an increase in surface distance.  相似文献   

4.
5.
This study describes a technique that combines the benefits of focusing schlieren and phase conditioning. Focusing schlieren blurs and drops contrast of non-critical features whereas phase conditioning emphasizes periodic flow features, and their combination produces unique results. The supersonic jets that we studied produced an intense tone referred to as screech. The measured screech tone signal was used as input to the phase conditioning circuit that adjusted the strobing light source to the vertical synchronization pulse of a CCD camera. The sharp video images obtained by this technique could either be frozen or continuously swept through one period of screech to acquire a slow motion video record of the jet unsteadiness. Two cases were visualized in this study: first, an underexpanded jet from a convergent rectangular nozzle at various fully expanded Mach numbers. Second, a supersonic jet emerging from a convergent-divergent rectangular nozzle at a design Mach number of 1.4, artificially excited by impingement tones. The results of this study illustrate the usefulness of this system in visualizing oscillatory flows.The authors would like to thank Dr. Edward J. Rice for his contributions including the design of the impingement obstacles. The efforts of Brentley C. Nowlin (NASA Lewis), and James E. Little (NYMA Inc.) in the design and construction of the strobe trigger mechanism are highly appreciated. We also thank Janet Ivancic (NASA Lewis Photo Lab) for the image enhancement.  相似文献   

6.
7.
Mathematical results are derived for the schlieren and shadowgraph contrast variation due to the refraction of light rays passing through two-dimensional compressible vortices with viscous cores. Both standard and small-disturbance solutions are obtained. It is shown that schlieren and shadowgraph produce substantially different contrast profiles. Further, the shadowgraph contrast variation is shown to be very sensitive to the vortex velocity profile and is also dependent on the location of the peak peripheral velocity (viscous core radius). The computed results are compared to actual contrast measurements made for rotor tip vortices using the shadowgraph flow visualization technique. The work helps to clarify the relationships between the observed contrast and the structure of vortical structures in density gradient based flow visualization experiments.Nomenclature a Unobstructed height of schlieren light source in cutoff plane, m - c Blade chord, m - f Focal length of schlieren focusing mirror, m - C T Rotor thrust coefficient, T/( 2 R 4) - I Image screen illumination, Lm/m 2 - l Distance from vortex to shadowgraph screen, m - n b Number of blades - p Pressure,N/m 2 - p Ambient pressure, N/m 2 - r, , z Cylindrical coordinate system - r c Vortex core radius, m - Non-dimensional radial coordinate, (r/r c ) - R Rotor radius, m - Tangential velocity, m/s - Specific heat ratio of air - Circulation (strength of vortex), m 2/s - Non-dimensional quantity, 2 82p r c 2 - Refractive index of fluid medium - 0 Refractive index of fluid medium at reference conditions - Gladstone-Dale constant, m 3/kg - Density, kg/m 3 - Density at ambient conditions, kg/m 3 - Non-dimensional density, (/ ) - Rotor solidity, (n b c/ R) - Rotor rotational frequency, rad/s  相似文献   

8.
The near-field structure of a luminous, high-speed plasma jet was visualized using a stroboscopic focussing schlieren technique. The glow from the jet and the effects of convective currents in the enclosure are overcome by this method thus providing greater details of the near-exit region of the jet.The work was supported by the National Science Foundation under the grant # NSF-DDM-9215846. The authors would like to thank R. Gansert for his help in conducting the experiments.  相似文献   

9.
10.
It is well-known [1] that two coaxial rings which are moving in the same direction pass through each other alternately. In the case of thin vortex rings this phenomenon was first considered qualitatively in [2]. The assumption that the vortex rings are thin means that when their interaction is considered they can be assumed to be annular vortex filaments. In the present paper, on the basis of the approach suggested in [2], certain new properties are determined for a system of two coaxial vortex rings of the same intensity.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 176–177, September–October, 1985.The authors express their sincere thanks to A. A. Aleksandrov for his interest in their work.  相似文献   

11.
Using Laser Doppler Anemometry (LDA) and Digital Particle Image Velocimetry (DPIV), the physical properties of laminar vortex rings are investigated in the Reynolds-number range 830 ≤ Re ≤ 1650. The measured initial circulations of the vortex rings are found to agree well with corrected versions of the vorticity-flux (slug-flow) model proposed by Didden and Pullin. The DPIV and LDA data show excellent agreement regarding local velocities and vortex-ring circulations. The DPIV data depict the distribution of the vorticity and circulation in the core regions, where the resulting vorticity distributions are found to be self-similar Gaussian profiles. The propagation velocity of the vortex rings is well approximated by an analytical model of Saffman for large core sizes. In the asymptotic limit t → ∞, the trajectories are in excellent agreement with the exact Stokes-dipole solution of Cantwell and Rott.  相似文献   

12.
13.
It is demonstrated experimentally that a vortex ring is created by the slowing down of the central part of a stream and that during formation of this ring the amount of the mass of liquid participating in its formation can change. The possibility is also established of obtaining liquid vortex blobs in the form of hemispheres or spheroids.Deceased.Translated from Izvestiya Akademii Nauk SSSR. Mekhanika Zhidkosti i Gaza, No. 2, pp. 19–26, March–April, 1973.In conclusion, the author thanks G. A. Lyubimov and A. T. Onufriev for useful discussions of the data from the investigations, and O. M. Belotserkovskii for interest in the work.  相似文献   

14.
The evolution of single elliptic vortex rings for initial aspect ratio (AR)=2,4,6 has been studied. The incompressible Navier-Stokes equations are solved by a dealiased pseudo-spectral method with 643 grid points in a periodic cube. We find that there are three kinds of vortex motion asAR increases and bifurcation occurs at certainAR. The processes of advection, interaction and decay of vortex ring are discussed. Numerical results coincide with experiments and other authors' numerical simulation. The project is supported by National Natural Science Foundation of China and Doctoral Program of Institution of Higher Education  相似文献   

15.
16.
Vortex rings are produced during the ejection of fluid through a nozzle or orifice, which occurs in a wide range of biological conditions such as blood flow through the valves of the heart or through arterial constrictions. Confined vortex ring dynamics, such as these, have not been previously studied despite their occurrence within the biological flow conditions mentioned. In this work, we investigate laminar vortex rings using particle image velocimetry and develop a new semi-empirical model for the evolution of vortex ring circulation subject to confinement. Here we introduce a decay parameter ?? which exponentially grows with increasing vortex ring confinement ratio, the ratio of the vortex ring diameter (D VR) to the confinement diameter (D), with the relationship $\beta=4.38 \exp(9.5D_{\rm VR}/D),$ resulting in a corresponding increase in the rate of vortex ring circulation decay. This work enables the prediction of circulation decay rate based on confinement, which is important to understanding naturally occurring confined vortex ring dynamics.  相似文献   

17.
The motion of a buoyant vortex ring counter the direction of the lift of given value is experimentally investigated on a wide range of the initial velocity of the ring. The dynamics of its parameters are determined. The experimental results are compared with the calculations according to the earlier developed theoretical model. It is established in which cases the theoretical model describes the dynamics of buoyant vortex ring in motion counter the lift.  相似文献   

18.
The axisymmetric vortex sheet model developed by Nitsche & Krasny (1994) has been extended to study the formation of vortex rings (pairs) at the edge of circular (2D) tube and opening. Computations based on this model are in good agreement with the experiments (Didden (1979) for circular tube and Auerbach (1987) for 2D tube and opening). Using this new model, evidences are provided to show that the main failure of the similarity theory (the false prediction of axial trajectory of vortex ring) is due to its ignorance of the self-induced ring velocity (mutual induction for vortex pair). We further reason why the similarity theory succeeds in its prediction of radial movement of vortex ring. The effects of various parameters such as turning angle α and piston speedU p (t) on the formation of vortex ring are investigated. Numerical result shows that turning angle α has no effect on circulation shed τ. We also discuss Glezer (1988)'s summary on the influence ofU p upon the shedding circulation, and finally give the variation of core distribution of vortex ring with α andU p (t). The project is supported by National Natural Science Foundation of China and Doctoral Program of Institution of Higher Education  相似文献   

19.
20.
This paper describes an experimental study of the properties of vortex rings with variation of parameters of the air jet expelled from a round nozzle by a special device. Characteristics of the vortex rings were determined by hotwire anemometer measurements of the velocity field at a certain distance from the nozzle exit where vortex formation is presumably completed. A mathematical model for the formation of a vortex ring based on conservation laws is proposed, and a comparison of theoretical results with experimental data is given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号