首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction of the chelating ligands (obtained by the condensation of 2-hydroxy-1-naphthaldehyde with various primary amines) with [RuHCl(CO)(EPh3)2(B)] (where E=P; B=PPh3, py or pip: E=As; B=AsPh3) in benzene afforded new stable ruthenium(II) carbonyl complexes of the general formula [Ru(Cl)(CO)(EPh3)(B)(L)] (L=anion of bidentate Schiff bases). The structure of the new complexes was investigated using elemental analyses, spectral (FT-IR, UV-vis and 1H NMR) and electrochemical studies and is found to be octahedral. All the metal complexes exhibit characteristic MLCT absorption and luminescence bands in the visible region. The luminescence efficiency of the ruthenium(II) complexes was explained based on the ligand environment around the metal ion. These complexes catalyze oxidation of primary and secondary alcohols into their corresponding carbonyl compounds in the presence of N-methylmorpholine-N-oxide (NMO) as the source of oxygen. The formation of high valent Ru(IV)=O species as a catalytic intermediate is proposed for the catalytic process.  相似文献   

2.
A series of stable low spin Ru(III) complexes of the type [RuX2(EPh3)2(L)] (where E = P or As; X = Cl or Br; L = mono basic bidentate Schiff bases) have been synthesized and were characterized by analytical, spectral and electrochemical data. A distorted octahedral geometry has been proposed for all the complexes. These complexes catalyze oxidation of primary alcohols and secondary alcohol with high yields in the presence of N-methylmorpholine-N-oxide (NMO). The ruthenium(III) Schiff base complexes show growth inhibitory activity against the bacteria Staphylococcus aureus (209p) and E. coli ESS (2231).  相似文献   

3.
Stable ruthenium(II) carbonyl complexes having the general composition [RuCl(CO)(PPh3)(B)(L)] (where B=PPh3, pyridine, piperidine or morpholine; L=anion of bidentate Schiff bases (Vanmet, Vanampy, Vanchx)) were synthesized from the reaction of [RuHCl(CO)(PPh3)2(B)] with bidentate Schiff base ligands derived from condensation of o-vanillin with primary amines such as methylamine, 2-aminopyridine and cyclohexylamine. The new complexes were characterized by elemental analysis, IR, UV-Vis and 1H NMR spectral data. The redox property of the complexes were studied by cyclic voltammetric technique and the stability of the complexes towards oxidation were related to the electron releasing or electron withdrawing ability of the substituent in the phenyl ring of o-vanillin. An octahedral geometry has been assigned for all the complexes. In all the above reactions, the Schiff bases replace one molecule of PPh3 and hydride ion from the starting complexes, which indicate that the Ru-N bonds present in the complexes containing heterocyclic nitrogen bases are stronger than the Ru-P. The Schiff bases and their ruthenium(II) complexes have been tested in vitro to evaluate their activity against bacteria, viz., Staphylococcus aureus (209p) and E. coli (ESS 2231).  相似文献   

4.
Diamagnetic ruthenium(II) complexes of the type [Ru(L)(CO)(B)(EPh3)] [where E = As, B = AsPh3; E = P, B = PPh3, py (or) pip and L = dibasic tridentate ligands dehydroacetic acid semicarbazone (abbreviated as dhasc) or dehydroacetic acid phenyl thiosemicarbazone (abbreviated as dhaptsc)] were synthesized from the reaction of [RuHCl(CO)(B)(EPh3)2] (where E = As, B = AsPh3; E = P, B = PPh3, py (or) pip) with different tridentate chelating ligands derived from dehydroacetic acid with semicarbazide or phenylthiosemicarbazide. All the complexes have been characterized by elemental analysis, FT-IR, UV–Vis and 1H NMR spectral methods. The coordination mode of the ligands and the geometry of the complexes were confirmed by single crystal X-ray crystallography of one of the complexes [Ru(dhaptsc)(CO)(PPh3)2] (5). All the complexes are redox active and are monitored by cyclic voltammetric technique. Further, the catalytic efficiency of one of the ruthenium complexes (5) was determined in the case of oxidation of primary and secondary alcohols into their corresponding aldehydes and ketones in the presence of N-methylmorpholine-N-oxide.  相似文献   

5.
A series of new mixed ligand hexacoordinated ruthenium(III) Schiff base complexes of the type [RuX(2)(EPh(3))(2)(LL')] (X=Cl, E=P; X=Cl or Br, E=As and LL'=anion of the Schiff bases derived from the condensation of 2-hydroxy-1-naphthaldehyde with aniline, 4-chloroaniline, 2-methyl aniline and 4-methoxy aniline) are reported. All the complexes have been characterized by analytical and spectral (IR, electronic and EPR) data. The redox behavior of the complexes has also been studied. The complexes exhibit catalytic activity in the oxidation of benzyl alcohol to benzaldehyde in the presence of N-methyl morpholine-N-oxide (NMO). An octahedral structure has been proposed for all of the complexes.  相似文献   

6.
Four complexes of different Cd(II) salts with 6,6″-dimethyl-2,2′:6′,2″-terpyridine L have been synthesized of the following structural formulae: [CdL(CH3OH)(ClO4)2] (1) [CdL(Cl/Br)2] (2) [CdLCl2] (2a) [CdL(CH3CO2)2] (3). Their properties have been established through analytical and spectroscopic (ESI-MS, IR, 1H NMR and UV–Visible absorption and emission) methods as well as by X-ray structure determinations. Quite high quantum yield values were obtained for the solution luminescence, despite the fact that presented compounds are ‘open species’ i.e. are susceptible to the effect of external environment. Titration experiments proved speciation i.e. formation of both 2:1 and 1:1 (L:Cd2+) species in MeCN, yet only the latter ones can be isolated in their crystalline form. In the solid state, there appears to be a correlation between the emission intensity and the stacking arrays in the lattice. There is no evidence that the methyl substituents exert a major influence upon the properties of the complexes, and it is implied however that they might also be responsible for preferential formation of 1:1 complexes in the solid state due to observed intermolecular packing lattices.  相似文献   

7.
Summary Several complexes of nickel(II) with Schiff bases derived from 3-substituted-4-amino-5-mercapto-1,2,4-triazoles (H2L) have been synthesised. The complexes have a stoichiometry NiL · 2H2O. The bonding of the ligands has been inferred from i.r. spectroscopy. The ligands preserve the thiol in the complexes. Magnetic moments obtained at room temperature and electronic spectra are consistent with octahedral geometry.  相似文献   

8.
Complexes of the type [Ru(CO)(EPh(3))(B)(L)] (E = P or As; B = PPh(3), AsPh(3), py or pip; L=dianion of the Schiff bases derived from thiosemicarbazone with acetoacetanilide, acetoacet-o-toluidide and o-chloro acetoacetanilide) have been synthesized from the reactions of equimolar amounts of [RuHCl(CO)(EPh(3))(2)(B)] and Schiff bases in benzene. The new complexes have been characterized by analytical and spectral (IR, electronic, NMR) data. The arrangement of PPh(3) groups around ruthenium metal was determined from (31)P NMR spectra. An octahedral structure has been assigned for all the new complexes. All the complexes exhibited catalytic activity for the oxidation of benzyl alcohol and cyclohexanol in presence of N-methylmorpholine-N-oxide as co-oxidant. The complexes also exhibited antibacterial activity against E. coli, Aeromonas hydrophilla and Salmonella typhi. The activity was compared with standard streptomycin.  相似文献   

9.
Several new hexa-coordinated ruthenium(II) complexes of the type [Ru(CO)(LL)(B)] (where, LL = anthacac, anthdibm, 2-amtpacac or 2-amtpdibm; B = PPh3 or py or pip or morph) have been prepared by reacting [RuHCl(CO)(PPh3)3] or [RuHCl(CO)(PPh3)2(B)] with tetradentate Schiff bases such as bis(anthranilic acid)acetylacetimine (H2-anthacac), bis(anthranilic acid) dibenzoylmethimine (H2-anthdibm), bis(2-aminothiophenol) acetylacetimine (H2-2-amptacac) or bis(2-aminothiophenol) dibenzoylmethimine (H2-2-amtpdibm). The complexes have been characterised by elemental analyses and spectral (i.r., electronic spectra, 1H- and 31P-n.m.r.) data. An octahedral structure has been tentatively proposed for the complexes, which were also tested for their antibacterial properties.  相似文献   

10.
Ruthenium(II) carbonyl complexes of general formula [Ru(CO)(B)(L)] [where B = PPh3, pyridine (py), piperidine (pip); L = the dianionic tetradentate Schiff bases derived from the condensation of acetylacetone or benzoylacetone with ethylenediamine, propylenediamine or trimethylenediamine] have been synthesised by reacting [RuHCl(CO)(PPh3)2(B)] (B = PPh3, py or pip) with bis(acetylacetone)ethylenediimine, bis(acetylacetone)propylenediimine, bis(acetylacetone)trimethylenedi- imine, bis(benzoylacetone)ethylenediimine, bis(benzoylacetone)propylenediimine or bis(benzoylacetone)trimethylenediimine. The complexes were characterised onthe basis of elemental analyses, i.r., electronic and 1H- and 31P{1H}-n.m.r. spectral studies. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
A series of six-coordinate ruthenium(II) complexes [Ru(CO)(L x )(B)] (B = PPh3, AsPh3 or Py; L x = unsymmetrical tetradentate Schiff base, x = 5–8; L5= salen-2-hyna, L6= Cl-salen-2-hyna, L7= valen-2-hyna, L8= o-hyac-2-hyna) have been prepared by reacting [RuHCl(CO)(EPh3)2(B)] (E = P or As) with unsymmetrical Schiff bases in benzene under reflux. The new complexes have been characterized by analytical and spectroscopic (infrared, electronic, 1H, 31P, and 13C NMR) data. An octahedral structure has been assigned for all the complexes. The new complexes are efficient catalysts for the transfer hydrogenation of ketones and also exhibit catalytic activity for the carbon–carbon coupling reactions.  相似文献   

12.
13.
Complexes of zinc(II) with N,N'-disalicylidene-1,2-phenylenediamine (H2dsp), N,N'-disalicylidene-3,4-diaminotoluene (H2dst), 4-nitro-N,N'-disalicylidene-1,2-phenylenediamine (H2ndsp) and N,N'-disalicylidene ethylenediamine (H2salen) have been prepared and characterized by elemental analysis, electronic, IR, 1H NMR and thermal studies. TG studies show that all complexes decomposed in one step. Kinetic and thermodynamic parameters were computed from the thermal decomposition data. The activation energy of complexes lies 60-87 kJ mol(-1) range.  相似文献   

14.
The complexes [VO(O2)Hbpa]+ (1a), [VO(O2)bpa] (1b, Hbpa = bis(picolyl)-beta-alanine), [VO(O2)heida]- (2, H2heida =N-(2-hydroxyethyl)iminodiacetic acid), [VO(O2)(3OH-pic)2]- (3a), [VO(O2)(3OH-pic)2]-/[V(O2)2(3OH-pic)2]- (3b, 3OH-pic = 3-hydroxypicolinic acid), [VO(O2)(3OH-pa)2] (6, 3OH-pa = 3-hydroxypicolylamide), [VO2(3OH-pic)2]- (4), [VO(tBuO2)(3OH-pic)2] (5) and [VO(tBuO2)(3OH-pa)2]2+ (7) have been characterised. The structures of 21a[ClO4].1b.2.25H2O, K.2H2O, [NH4].H2O and [nBu4]3b are reported. Supramolecular patterns arise from intermolecular hydrogen bonds, the relevance of which for the peroxo/hydroperoxo intermediates in oxo transfer reactions catalysed by vanadate-dependent haloperoxidases is addressed. Specific solution patterns have been analysed by 51V and 17O NMR.  相似文献   

15.
A series of Ru(II)-peptide nucleic acid (PNA)-like monomers, [Ru(bpy)(2)(dpq-L-PNA-OH)](2+) (M1), [Ru(phen)(2)(dpq-L-PNA-OH)](2+) (M2), [Ru(bpy)(2)(dppz-L-PNA-OH)](2+) (M3), and [Ru(phen)(2)(dppz-L-PNA-OH)](2+) (M4) (bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline, dpq-L-PNA-OH = 2-(N-(2-(((9H-fluoren-9-yl)methoxy)carbonylamino)ethyl)-6-(dipyrido[3,2-a:2',3'-c]phenazine-11-carboxamido)hexanamido)acetic acid, dppz-L-PNA-OH = 2-(N-(2-(((9H-fluoren-9-yl) methoxy)carbonylamino)ethyl)-6-(dipyrido[3,2-f:2',3'-h]quinoxaline-2-carboxamido)acetic acid) have been synthesized and characterized by IR and (1)H NMR spectroscopy, mass spectrometry, and elemental analysis. As is typical for Ru(II)-tris(diimine) complexes, acetonitrile solutions of these complexes (M1-M4) show MLCT transitions in the 443-455 nm region and emission maxima at 618, 613, 658, and 660 nm, respectively, upon photoexcitation at 450 nm. Changes in the ligand environment around the Ru(II) center are reflected in the luminescence and electrochemical response obtained from these monomers. The emission intensity and quantum yield for M1 and M2 were found to be higher than for M3 and M4. Electrochemical studies in acetonitrile show the Ru(II)-PNA monomers to undergo a one-electron redox process associated with Ru(II) to Ru(III) oxidation. A positive shift was observed in the reversible redox potentials for M1-M4 (962, 951, 936, and 938 mV, respectively, vs Fc(0/+) (Fc = ferrocene)) in comparison with [Ru(bpy)(3)](2+) (888 mV vs Fc(0/+)). The ability of the Ru(II)-PNA monomers to generate electrochemiluminescence (ECL) was assessed in acetonitrile solutions containing tripropylamine (TPA) as a coreactant. Intense ECL signals were observed with emission maxima for M1-M4 at 622, 616, 673, and 675 nm, respectively. At an applied potential sufficiently positive to oxidize the ruthenium center, the integrated intensity for ECL from the PNA monomers was found to vary in the order M1 (62%) > M3 (60%) > M4 (46%) > M2 (44%) with respect to [Ru(bpy)(3)](2+) (100%). These findings indicate that such Ru(II)-PNA bioconjugates could be investigated as multimodal labels for biosensing applications.  相似文献   

16.
New ruthenium(II) complexes, [Ru(CO)(B)(LL)(PPh3)] (where, LL = tridentate Schiff bases; B = PPh3, pyridine, piperidine or morpholine) have been prepared by reacting [RuHCl(CO)(PPh3)3] or [RuHCl(CO)(PPh3)2(B)] with Schiff bases containing donor groups (O, N, X) viz., salicylaldehyde thiosemicarbazone (X = S), salicylaldehyde semicarbazone (X = O), o-hydroxyacetophenone thiosemicarbazone (X = S) and o-hydroxyacetophenone semicarbazone (X = O). The new complexes were characterised by elemental analysis, spectral (i.r., 1H- and 31P-n.m.r.), data.  相似文献   

17.
We report the biological activity of the new Schiff base ligand H2L (H2L = 6,6′-((1E,11E)-5,8-dioxa-2,11-diazadodeca-1,11-diene-1,12-diyl)bis(2,4-dichlorophenol)), its derived metal(II) complexes [Cu(L)] (1), [Co(L)] (2), [Ni(L)] (3) and [Zn(L)] (4), along with their structural characterizations by using various analytical and spectroscopic techniques. Electrochemical investigations showed that all of these Cu(II), Co(II) and Ni(II) complexes were reversibly reducible. Although the change of the number of unpaired electrons are different of the metal cations, they have an effect on the redox potentials of the Co(II)/(I), Ni(II)/(I) and Cu(II)/(I) couples. The 1H NMR and FTIR data concluded that the Schiff base ligand H2L acts as a hexadentate ligand coordinating with metal(II) ions through the oxygen atoms of the (COC), phenolic (COH) groups and nitrogen atom of the azomethine (CHN) group. UV-Visible absorption spectra studies clearly revealed the octahedral geometry of the prepared metal(II) complexes. Complexes 1 and 4 were found to be efficient in bringing about antimicrobial activities. The proposed mechanism of their antimicrobial activities has been discussed. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed the remarkable cytotoxicity of complex 1 (IC50 = 17 ± 1.3 μg/mL) on human breast cancer MCF-7 cells than Schiff base ligand H2L and complexes 2–4. Moreover, AO/EB staining assay revealed cell death due to apoptosis in MCF-7 cells and the generation of ROS by the Schiff base ligand H2L and its derived metal(II) complexes 1–4 may be a possible cause for their cytotoxic activity.  相似文献   

18.
A series of iron(III) complexes 1-4 of the tripodal tetradentate ligands N,N-bis(pyrid-2-ylmethyl)-N-(2-hydroxyethyl)amine H(L1), N,N-bis(pyrid-2-ylmethyl)-N-(2-hydroxy- propyl)amine H(L2), N,N-bis(pyrid-2-ylmethyl)-N-ethoxyethanolamine H(L3), and N-((pyrid-2-ylmethyl)(1-methylimidazol-2-ylmethyl))-N-(2-hydroxyethyl)amine H(L4), have been isolated, characterized and studied as functional models for intradiol-cleaving catechol dioxygenases. In the X-ray crystal structure of [Fe(L1)Cl(2)] 1, the tertiary amine nitrogen and two pyridine nitrogen atoms of H(L1) are coordinated meridionally to iron(III) and the deprotonated ethanolate oxygen is coordinated axially. In contrast, [Fe(HL3)Cl(3)] 3 contains the tertiary amine nitrogen and two pyridine nitrogen atoms coordinated facially to iron(III) with the ligand ethoxyethanol moiety remaining uncoordinated. The X-ray structure of the bis(μ-alkoxo) dimer [{Fe(L5)Cl}(2)](ClO(4))(2)5, where HL is the tetradentate N(3)O donor ligand N,N-bis(1-methylimidazol-2-ylmethyl)-N-(2-hydroxyethyl)amine H(L5), contains the ethanolate oxygen donors coordinated to iron(III). Interestingly, the [Fe(HL)(DBC)](+) and [Fe(HL3)(HDBC)X] adducts, generated by adding ~1 equivalent of piperidine to solutions containing equimolar quantities of iron(III) complexes 1-5 and H(2)DBC (3,5-di-tert-butylcatechol), display two DBC(2-)→ iron(III) LMCT bands (λ(max): 1, 577, 905; 2, 575,915; 3, 586, 920; 4, 563, 870; 5, 557, 856 nm; Δλ(max), 299-340 nm); however, the bands are blue-shifted (λ(max): 1, 443, 700; 2, 425, 702; 3, 424, 684; 4, 431, 687; 5, 434, 685 nm; Δλ(max), 251-277 nm) on adding 1 more equivalent of piperidine to form the adducts [Fe(L)(DBC)] and [Fe(HL3)(HDBC)X]. Electronic spectral and pH-metric titration studies in methanol disclose that the ligand in [Fe(HL)(DBC)](+) is protonated. The [Fe(L)(DBC)] adducts of iron(III) complexes of bis(pyridyl)-based ligands (1,2) afford higher amounts of intradiol-cleavage products, whereas those of mono/bis(imidazole)-based ligands (4,5) yield mainly the auto-oxidation product benzoquinone. It is remarkable that the adducts [Fe(HL)(DBC)](+)/[Fe(HL3)(DBC)X] exhibit higher rates of oxygenation affording larger amounts of intradiol-cleavage products and lower amounts of benzoquinone.  相似文献   

19.
Five new metal complexes [Pd(LH)2] (1), [Pd(L)2Ru2(bpy)4](ClO4)2 (2), [Pd(L)2Ru2(phen)4](ClO4)2 (3), [Pd(L)2Ru2(dafo)4](ClO4)2 (4) and [Pd(L)2Ru2(dcbpy)4](ClO4)2 (5), (where, L = ligand, bpy = 2,2′-bipyridine, phen = 1,10-phenantroline, dafo = 4,5-diazafluoren-9-one and dcbpy = 3,3′-dicarboxy-2,2′-bipyridine) have been isolated and characterized by UV-VIS, FT-IR, 1H NMR, magnetic susceptibility measurements, elemental analysis, molar conductivity, X-ray powder techniques, thermal analyses and their morphology studied by SEM measurements. IR spectra show that the ligand acts in a tetradentate manner and coordinates N4 donor groups of LH2 to PdII ion. The disappereance of H-bonding (O−H···O) in the trinuclear RuII-PdII-RuII metal complexes, the RuII ion centered into the main oxime core by the coordination of the imino groups while the two RuII ions coordinate dianionic oxygen donors of the oxime groups and linked to the ligands of bpy, phen, dafo and dbpy. The X-powder results show that 1 metal complex is indicating crystalline nature, not amorphous nature. Whereas, the X-ray powder pattern of the ligand (LH2) with 2, 3,4 and 5 exhibited only broad humps, indicating its amorphous nature. The catalytic activity of three different complexes were tested in the Suzuki coupling reaction. The 1, 4 and 5 metal complexes catalyse Suzuki coupling reaction between phenylboronic acid and arylbromides affording biphenyls. Also, the thermal results shown that the most stable complex is 1 compound while the less stable is 4 compound.  相似文献   

20.
A series of six alkyl-substituted tetramethylcyclopentadienyl mononuclear metal carbonyl complexes [(η 5-C5Me4R)Re(CO)3] [R = allyl (1), i-Pr (2), n-butyl (3), t-butyl (4), benzyl (5), CH(CH2)4 (6)] have been synthesized by treating the corresponding ligands (C5Me4R) [R = allyl, i-Pr, n-butyl, t-butyl, benzyl, CH(CH2)4] with Re2(CO)10 in refluxing xylene. The six new complexes were characterized by elemental analysis, IR, 1H NMR and 13C NMR spectroscopy. The crystal structures of all six complexes were determined by X-ray crystal diffraction analysis, showing that they have similar molecular structures, being mononuclear carbonyl complexes. In each of these complexes, the Re atom is η 5 -coordinated to the cyclopentadienyl ring. Complexes 15 have significant catalytic activity in Friedel–Crafts reactions of aromatic compounds with alkylation reagents. Compared with traditional catalysts, these mononuclear rhenium carbonyl complexes have obvious advantages such as lower amounts of catalyst, mild reaction conditions and environmentally friendly chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号