首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider the Cartan extension of Riemann geometry as the basis upon which to build the Sciama–Kibble completion of Einstein gravity, developing the most general theory in which torsion and metric have two independent coupling constants: the main problem of the ESK theory was that torsion, having the Newton constant, was negligible beyond the Planck scale, but in this $\mathrm {ESK}^{2}$ theory torsion, with its own coupling constant, may be relevant much further Planck scales; further consequences of these torsionally-induced interactions will eventually be discussed.  相似文献   

2.
We study the behaviour of Yang–Mills theory under the inclusion of gravity. In the weak-gravity limit, the running gauge coupling receives no contribution from the gravitational sector, if all symmetries are preserved. This holds true with and without cosmological constant. We also show that asymptotic freedom persists in general field-theory-based gravity scenarios including gravitational shielding as well as asymptotically safe gravity.  相似文献   

3.
In this paper we show that power-law inflation can be realized in non-minimal gravitational coupling of electromagnetic field with a general function of the Gauss–Bonnet invariant. Such a non-minimal coupling may appear due to quantum corrections. We also consider modified Maxwell-F(G) gravity in which non-minimal coupling between electromagnetic field and f(G) occurs in the framework of modified Gauss–Bonnet gravity. It is shown that inflationary cosmology and late-time accelerated expansion of the universe are possible in such a theory.  相似文献   

4.
In this paper we show that power-law inflation can be realized in non-minimal gravitational coupling of Yang–Mills field with a general function of the Gauss–Bonnet invariant in the framework of Einstein gravity. Such a non-minimal coupling may appear due to quantum corrections. We also discuss the non-minimal Yang–Mills-f(G) gravity in the framework of modified Gauss–Bonnet action which is widely studied recently. It is shown that both inflation and late-time cosmic acceleration are possible in such a theory.  相似文献   

5.
With the usual definitions for the entropy and the temperature associated with the apparent horizon, we discuss the first law of the thermodynamics on the apparent in the general scalar-tensor theory of gravity with the kinetic term of the scalar field non-minimally coupling to Einstein tensor. We show the equivalence between the first law of thermodynamics on the apparent horizon and Friedmann equation for the general models, by using a mass-like function which is equal to the Misner-Sharp mass on the apparent horizon. The results further support the universal relationship between the first law of thermodynamics and Friedmann equation.  相似文献   

6.
We show that the shift of quantum mechanical phase can depend on the nonminimal coupling of scalar-tensor gravity. This fact could constitute a further test to discriminate among the various relativistic theories of gravity. Consequences on atmospheric, solar and astrophysical neutrinos are discussed.  相似文献   

7.
In this paper,we have framed bouncing cosmological model of the Universe in the presence of general relativistic hydrodynamics in an extended theory of gravity.The metric assumed here is the flat Friedmann–Robertson–Walker space–time and the stress energy tensor is of perfect fluid.Since general relativity(GR)has certain issues with late time cosmic speed up phenomena,here we have introduced an additional matter geometry coupling that described the extended gravity to GR.The dynamical parameters are derived and analyzed.The dynamical behavior of the equation of state parameter has been analyzed.We have observed that the bouncing behavior is mostly controlled by the coupling parameter.  相似文献   

8.
Shape dynamics is a metric theory of pure gravity, equivalent to general relativity, but formulated as a gauge theory of spatial diffeomporphisms and local spatial conformal transformations. In this paper we extend the construction of shape dynamics form pure gravity to gravity-matter systems and find that there is no fundamental obstruction for the coupling of gravity to standard matter. We use the matter gravity system to construct a clock and rod model for shape dynamics which allows us to recover a spacetime interpretation of shape dynamics trajectories.  相似文献   

9.
We study the consistency conditions of the generalized f(R) gravity by extending f(R) gravity with non-minimal coupling to the generalized f(R) with arbitrary geometry-matter coupling.Specifically,we discuss the two particular models of generalized f(R) by means of consistencyconditions.It is found that the second model is not physically viable so as to be ruled out.Moreover,we further constrain the first model using the DolgovKawasaki stability criterion,and give the value ranges of the parameters in the first model.It is worth stressing that our results include the ones in f(R) gravity with non-minimal coupling as the special case of Q(L_m) = L_m.  相似文献   

10.
In this paper we consider the most general least-order derivative theory of gravity in which not only curvature but also torsion is explicitly present in the Lagrangian, and where all independent fields have their own coupling constant: we will apply this theory to the case of ELKO fields, which is the acronym of the German Eigenspinoren des LadungsKonjugationsOperators designating eigenspinors of the charge conjugation operator, and thus they are a Majorana-like special type of spinors; and to the Dirac fields, the most general type of spinors. We shall see that because torsion has a coupling constant that is still undetermined, the ELKO and Dirac field equations are endowed with self-interactions whose coupling constant is undetermined: we discuss different applications according to the value of the coupling constants and the different properties that consequently follow. We highlight that in this approach, the ELKO and Dirac field’s self-interactions depend on the coupling constant as a parameter that may even make these non-linearities manifest at subatomic scales.  相似文献   

11.
We study Chern-Simons (CS) gravity in the parametrized post-Newtonian (PPN) framework through a weak-field solution of the modified field equations. We find that CS gravity possesses the same PPN parameters as general relativity, except for the inclusion of a new term, proportional to the CS coupling and the curl of the PPN vector potential. This new term leads to a modification of frame dragging and gyroscopic precession and we provide an estimate of its size. This correction might be used in experiments, such as Gravity Probe B, to bound CS gravity and test string theory.  相似文献   

12.
Clifford M. Will 《Pramana》2004,63(4):731-740
We review the experimental evidence for Einstein’s general relativity. Tests of the Einstein equivalence principle support the postulates of curved space-time and bound variations of fundamental constants in space and time, while solar system experiments strongly confirm weak-field general relativity. The binary pulsar provides tests of gravitational wave damping and of strong-field general relativity. Future experiments, such as the gravity probe B gyroscope experiment, a satellite test of the equivalence principle, and tests of gravity at short distance to look for extra spatial dimensions could further constrain alternatives to general relativity. Laser Interferometric Gravitational Wave Observatories on Earth and in space may provide new tests of scalar-tensor gravity and graviton-mass theories via the properties of gravitational waves.  相似文献   

13.
We construct solutions of the 3 + 1 dimensional Faddeev–Skyrme model coupled to Einstein gravity. The solutions are static and asymptotically flat. They are characterized by a topological Hopf number. We investigate the dependence of the ADM masses of gravitating Hopfions on the gravitational coupling. When gravity is coupled to flat space solutions, a branch of gravitating Hopfion solutions arises and merges at a maximal value of the coupling constant with a second branch of solutions. This upper branch has no flat space limit. Instead, in the limit of a vanishing coupling constant, it connects to either the Bartnik–McKinnon or a generalized Bartnik–McKinnon solution. We further find that in the strong-coupling limit, there is no difference between the gravitating solitons of the Skyrme model and the Faddeev–Skyrme model.  相似文献   

14.
We use the Møller energy-momentum complex both in general relativity and teleparallel gravity to evaluate energy distribution (due to matter plus fields including gravity) in the dyadosphere region for Reissner-Nordström black hole. We found the same and acceptable energy distribution in these different approaches of the Møller energy-momentum complex. Our teleparallel gravitational result is also independent of the teleparallel dimensionless coupling constant, which means that it is valid in any teleparallel model. This paper sustains (a) the importance of the energy-momentum definitions in the evaluation of the energy distribution of a given space-time and (b) the viewpoint of Lessner that the Møller energy-momentum complex is a powerful concept for energy and momentum.  相似文献   

15.
We investigate the Hamiltonian structure of linearized extended Ho?ava–Lifshitz gravity in a flat cosmological background following the Faddeev–Jackiw's Hamiltonian reduction formalism. The Hamiltonian structure of extended Ho?ava–Lifshitz gravity is similar to that of the projectable version of original Ho?ava–Lifshitz gravity, in which there is one primary constraint and so there are two physical degrees of freedom. In the infrared (IR) limit, however, there is one propagating degree of freedom in the general cosmological background, and that is coupled to the scalar graviton mode. We find that extra scalar graviton mode in an inflationary background can be decoupled from the matter field in the IR limit. But it is necessary to go beyond linear order in order to draw any conclusion of the strong coupling problem.  相似文献   

16.
We propose the simplest model of teleparallel dark energy with purely a non-minimal coupling to gravity but no self-potential, a single model possessing various interesting features: simplicity, self-potential-free, the guaranteed late-time cosmic acceleration driven by the non-minimal coupling to gravity, tracker behavior of the dark energy equation of state at earlier times, a crossing of the phantom divide at a late time, and the existence of a finite-time future singularity. We find the analytic solutions of the dark-energy scalar field respectively in the radiation, matter, and dark energy dominated eras, thereby revealing the above features. We further illustrate possible cosmic evolution patterns and present the observational constraint of this model obtained by numerical analysis and data fitting.  相似文献   

17.
18.
We consider Friedmann–Lemaître–Robertson–Walker flat cosmological models in the framework of general Jordan frame scalar-tensor theories of gravity with arbitrary coupling function and potential. For the era when the cosmological energy density of the scalar potential dominates over the energy density of ordinary matter, we use a nonlinear approximation of the decoupled scalar field equation for the regime close to the so-called limit of general relativity where the local weak field constraints are satisfied. We give the solutions in cosmological time with a particular attention to the classes of models asymptotically approaching general relativity. The latter can be subsumed under two types: (i) exponential convergence, and (ii) damped oscillations around general relativity. As an illustration we present an example of oscillating dark energy.  相似文献   

19.
A new, Eddington inspired theory of gravity was recently proposed by Ba?ados and Ferreira. It is equivalent to general relativity in vacuum, but differs from it inside matter. This viable, one-parameter theory was shown to avoid cosmological singularities and turns out to lead to many other exciting new features that we report here. First, for a positive coupling parameter, the field equations have a dramatic impact on the collapse of dust, and do not lead to singularities. We further find that the theory supports stable, compact pressureless stars made of perfect fluid, which provide interesting models of self-gravitating dark matter. Finally, we show that the mere existence of relativistic stars imposes a strong, near optimal constraint on the coupling parameter, which can even be improved by observations of the moment of inertia of the double pulsar.  相似文献   

20.
周康  杨战营  邹德成  岳瑞宏 《中国物理 B》2012,21(2):20401-020401
We explore static spherically symmetric stars in Gauss-Bonnet gravity without a cosmological constant, and present an exact internal solution which attaches to the exterior vacuum solution outside stars. It turns out that the presence of the Gauss-Bonnet term with a positive coupling constant completely changes thermal and gravitational energies, and the upper bound of the red shift of spectral lines from the surface of stars. Unlike in general relativity, the upper bound of the red shift is dependent on the density of stars in our case. Moreover, we have proven that two theorems for judging the stability of equilibrium of stars in general relativity can hold in Gauss-Bonnet gravity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号