首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
浊点萃取-火焰原子吸收光谱法测定水样中痕量铜的研究   总被引:19,自引:0,他引:19  
提出了浊点萃取火焰原子吸收光谱法测定痕量铜的新方法。详细探讨了溶液pH,试剂浓度等实验条件对浊点萃取及测定灵敏度的影响,在最佳下,富集50mL样品溶液,用火焰原子吸收光谱法测定,铜的检测限为0.35μg/L,铜的富集倍率为71倍。方法用于自来水、河水及海水中痕量铜的测定。  相似文献   

2.
Cloud point extraction (CPE) has been used for the simultaneous pre-concentration of cadmium, copper, lead and zinc after the formation of a complex with 1-(2-thiazolylazo)-2-naphthol (TAN), and later analysis by flame atomic absorption spectrometry (FAAS) using octylphenoxypolyethoxyethanol (Triton X-114) as surfactant. The chemical variables affecting the separation phase and the viscosity affecting the detection process were optimized. At pH 8.6, pre-concentration of only 50 ml of sample in the presence of 0.05% Triton X-114 and 2×10−5 mol l−1 TAN permitted the detection of 0.099, 0.27, 1.1 and 0.095 ng ml−1 cadmium, copper, lead and zinc, respectively. The enhancement factors were 57.7, 64.3, 55.6 and 63.7 for cadmium, copper, lead and zinc, respectively. The proposed method has been applied to the determination of cadmium, copper, lead and zinc in water samples and a standard reference material (SRM).  相似文献   

3.
浊点萃取电热原子吸收光谱法测定水中痕量铊   总被引:2,自引:0,他引:2  
采用吡咯烷基二硫代氨基甲酸铵(APDC)为螯合剂,Triton X-114作为表面活性剂,建立了浊点萃取预富集电热原子吸收光谱法测定水中痕量铊的方法。在优化的实验条件下,方法的检出限可达0.07μg/L,相对标准偏差为3.6%(4μg/L,n=7),加标回收率为93%~106%,富集倍率为31。该方法成功应用于自来水和河水中痕量铊的测定。  相似文献   

4.
浊点萃取-石墨炉原子吸收光谱法测定水样中痕量铝   总被引:3,自引:2,他引:3  
提出了浊点萃取石墨炉原子吸收光谱法测定痕量铝的新方法。探讨了溶液pH、试剂浓度等实验条件对浊点萃取及测定灵敏度的影响。在最佳条件下,富集40 mL样品溶液,用石墨炉原子吸收光谱法测定,铝的检出限为0.045μg/L,铝的富集倍率为78.5倍。方法适用于自来水、河水及海水中痕量铝的测定。  相似文献   

5.
In this study, flow injection-cloud point extraction (FI-CPE) of iron and copper in food samples by flame atomic absorption spectrometric determination was described. Triton X-114 non-ionic surfactant and Eriochrome Cyanine R (ECR) have been used as an extraction medium and a chelating agent, respectively. The amounts of Triton X-114, ECR and the pH value necessary for extraction were carefully optimized. In addition, several parameters of the FI-CPE system, including sample loading rate, column dimension, type of packing material, eluent flow rate were investigated and analytical characteristics of the method were evaluated. Under optimum conditions, detection limits of 0.33 ng/mL and 0.57 ng/mL and quantification limits of 1.1 ng/mL and 1.9 ng/mL for iron and copper along with enrichment factors of 141 and 99 were obtained, respectively. The calibration was linear over the range 1.5-25 ng/mL and 1.0-35 ng/mL for iron and copper, respectively. The proposed CPE technique has been successfully applied for the determination of iron and copper ions in certified reference materials (NCS DC 73349—bush, branches and leaves; and TM-23.2—fortified water), water samples (mineral and sea water) and food samples (vegetables, bread and hazelnut) with high efficiency.  相似文献   

6.
Dithizone (diphenylthiocarbazone) was used as a complexing agent in cloud point extraction for the first time and applied for selective preconcentration of trace amounts of silver. The analyte in the initial aqueous solution was acidified with sulfuric acid (pH<1) and Triton X-114 was added as a surfactant. After phase separation, based on the cloud point separation of the mixture, the surfactant rich phase was diluted with tetrahydrofuran (THF) and the analyte determined in the enriched solution by flame atomic absorption spectrometry. After optimization of the complexation and extraction conditions, a preconcentration factor of 43 was obtained for only 10 ml of sample. The analytical curve was linear in the range of 3-200 ng ml−1 and the limit of detection was 0.56 ng ml−1. The proposed method was applied to the determination of silver in water samples.  相似文献   

7.
A new approach for developing a cloud point extraction-electrothermal atomic absorption spectrometry has been described and used for determination of arsenic. The method is based on phase separation phenomenon of non-ionic surfactants in aqueous solutions. After reaction of As(V) with molybdate towards a yellow heteropoly acid complex in sulfuric acid medium and increasing the temperature to 55 °C, analytes are quantitatively extracted to the non-ionic surfactant-rich phase (Triton X-114) after centrifugation.To decrease the viscosity of the extract and to allow its pipetting by the autosampler, 100 μl methanol was added to the surfactant-rich phase. An amount of 20 μl of this solution plus 10 μl of 0.1% m/v Pd(NO3)2 were injected into the graphite tube and the analyte determined by electrothermal atomic absorption spectrometry.Total inorganic arsenic(III, V) was extracted similarly after oxidation of As(III) to As(V) with KMnO4. As(III) was calculated by difference. After optimization of the extraction condition and the instrumental parameters, a detection limit (3σB) of 0.01 μg l−1 with enrichment factor of 52.5 was achieved for only 10 ml of sample. The analytical curve was linear in the concentration range of 0.02-0.35 μg l−1. Relative standard deviations were lower than 5%. The method was successfully applied to the determination of As(III) and As(V) in tap water and total arsenic in biological samples (hair and nail).  相似文献   

8.
In the presented work, the conditions for cloud point extraction of iron from aqueous solutions using 7-iodo-8-hydroxyquinolin-5-sulphonic acid (Ferron) was investigated and optimized. The procedure is based on the separation of its ferron complex into the micellar media by adding the surfactant Triton X-114. After phase separation, the surfactant-rich phase was dissolved with 1.0 M HNO3 in methanol. Iron was determined by flame atomic absorption spectrometry. Optimization of the pH, ligand and surfactant quantities, incubation time, temperature, viscosity, sample volume, and interfering ions were investigated. The effects of the matrix ions were also examined. The detection limits for three times the standard deviations of the blank for iron was 0.4 ng m L-1, enrichment factor of 19.6 and preconcentration factor of 30 could be achieved. The validity of cloud point extraction was checked by employing real samples including soil, blood, spinach, milk, meat, liver and orange juice samples using the standard addition method, which gave satisfactory results.In the presented work, the conditions for cloud point extraction of iron from aqueous solutions using 7-iodo-8-hydroxyquinolin-5-sulphonic acid (Ferron) was investigated and optimized. The procedure is based on the separation of its ferron complex into the micellar media by adding the surfactant Triton X-114. After phase separation, the surfactant-rich phase was dissolved with 1.0 M HNO3 in methanol. Iron was determined by flame atomic absorption spectrometry. Optimization of the pH, ligand and surfactant quantities, incubation time, temperature, viscosity, sample volume, and interfering ions were investigated. The effects of the matrix ions were also examined. The detection limits for three times the standard deviations of the blank for iron was 0.4 ng m L−1, enrichment factor of 19.6 and preconcentration factor of 30 could be achieved. The validity of cloud point extraction was checked by employing real samples including soil, blood, spinach, milk, meat, liver and orange juice samples using the standard addition method, which gave satisfactory results.   相似文献   

9.
Cloud point extraction (CPE) methodology has successfully been employed for the preconcentration of ultra-trace arsenic species in aqueous samples prior to hydride generation atomic absorption spectrometry (HGAAS). As(III) has formed an ion-pairing complex with Pyronine B in presence of sodium dodecyl sulfate (SDS) at pH 10.0 and extracted into the non-ionic surfactant, polyethylene glycol tert-octylphenyl ether (Triton X-114). After phase separation, the surfactant-rich phase was diluted with 2 mL of 1 M HCl and 0.5 mL of 3.0% (w/v) Antifoam A. Under the optimized conditions, a preconcentration factor of 60 and a detection limit of 0.008 μg L−1 with a correlation coefficient of 0.9918 was obtained with a calibration curve in the range of 0.03–4.00 μg L−1. The proposed preconcentration procedure was successfully applied to the determination of As(III) ions in certified standard water samples (TMDA-53.3 and NIST 1643e, a low level fortified standard for trace elements) and some real samples including natural drinking water and tap water samples.  相似文献   

10.
Tang AN  Ding GS  Yan XP 《Talanta》2005,67(5):942-946
Cloud point extraction was applied as a preconcentration step for electrothermal atomic absorption spectrometry (ETAAS) determination of As(III) in aqueous solutions. After complexation with ammonium pyrrolidinedithiocarbamate, the analyte was quantitatively extracted to the surfactant-rich phase in the non-ionic surfactant octylphenoxypolyethoxyethanol (Triton X-114) after centrifugation. 0.1 mol L−1 HNO3 in methanol was added to the surfactant-rich phase before ETAAS determination. The precision (R.S.D.) for 11 replicate determinations of 5.0 μg L−1 of As(III) was 3.0%. The concentration factor, which is defined as the concentration ratio of the analyte in the final diluted surfactant-rich extract ready for ETAAS determination and in the initial solution, was 36 for As(III). The linear concentration range was from 0.1 to 20 μg L−1. The developed method was applied to the determination of As(III) in lake water and river water.  相似文献   

11.
浊点萃取-火焰原子吸收光谱法测定淡水鱼中痕量铅   总被引:2,自引:0,他引:2  
采用以双硫腙为络合剂、Triton X-100为表面活性剂的新型浊点萃取体系富集淡水鱼中的痕量铅,并用火焰原子吸收光谱法对其进行测定。探讨了溶液pH、表面活性剂浓度、络合剂用量、平衡温度、平衡时间等对浊点萃取及测定灵敏度的影响,优化了实验条件。在最佳条件下测得铅的检出限为0.090μg/L,校准曲线相关系数为0.9999。该方法已用于淡水鱼中痕量铅的测定。  相似文献   

12.
Candir S  Narin I  Soylak M 《Talanta》2008,77(1):289-293
A cloud point extraction (CPE) procedure has been developed for the determination trace amounts of Cr(III), Pb(II), Cu(II), Ni(II), Bi(III), and Cd(II) ions by using flame atomic absorption spectrometry. The proposed cloud point extraction method was based on cloud point extraction of analyte metal ions without ligand using Tween 80 as surfactant. The surfactant-rich phase was dissolved with 1.0 mL 1.0 mol L−1 HNO3 in methanol to decrease the viscosity. The analytical parameters were investigated such as pH, surfactant concentration, incubation temperature, and sample volume, etc. Accuracy of method was checked analysis by reference material and spiked samples. Developed method was applied to several matrices such as water, food and pharmaceutical samples. The detection limits of proposed method were calculated 2.8, 7.2, 0.4, 1.1, 0.8 and 1.7 μg L−1 for Cr(III), Pb(II), Cu(II), Ni(II), Bi(III), and Cd(II), respectively.  相似文献   

13.
A thermospray flame furnace atomic absorption spectrometer (TS-FF-AAS) was employed for Co determination in biological materials. Cobalt presents a high atomization temperature and consequently poor sensitivity is obtained without changing its thermochemical behavior. The effect of different complexing agents on sensitivity was evaluated based on the formation of Co volatile compounds. A cloud point procedure was optimized for Co preconcentration for further improvement of sensitivity. Samples were treated with 1 mol l− 1 hydrochloric acid solution for quantitative extraction of Co without simultaneous extraction of Fe, since it is a strong interferent. After the extraction and preconcentration steps, a sample volume of 150 μl was introduced into the hot Ni tube using air as carrier at a flow-rate of 0.4 ml min− 1. The best sensitivity was attained using ammonium pyrrolidinedithiocarbamate (APDC) and Triton X-114 was employed for implementation of the cloud point procedure. The detection limit obtained for Co was 2.1 μg l− 1 and the standard deviation was 5.8% for a solution containing 100 μg l− 1 (n = 10). Accuracy was checked using two certified reference materials (tomato leaves and bovine liver) and results were in agreement with certified values at a 95% confidence level. Employing the developed procedure, Co were quantified in different biological materials (plant and animal tissues). The proposed method presents suitable sensitivity for cobalt determination in the quality control of foods.  相似文献   

14.
A new approach for a cloud point extraction electrothermal atomic absorption spectrometric method was used for determining bismuth. The aqueous analyte was acidified with sulfuric acid (pH 3.0-3.5). Triton X-114 was added as a surfactant and dithizone was used as a complexing agent.After phase separation at 50 °C based on the cloud point separation of the mixture, the surfactant-rich phase was diluted using tetrahydrofuran (THF). Twenty microliters of the enriched solution and 10 μl of 0.1% (w/v) Pd(NO3)2 as chemical modifier were dispersed into the graphite tube and the analyte determined by electrothermal atomic absorption spectrometry. After optimizing extraction conditions and instrumental parameters, a preconcentration factor of 196 was obtained for a sample of only 10 ml. The detection limit was 0.02 ng ml−1 and the analytical curve was linear for the concentration range of 0.04-0.60 ng ml−1. Relative standard deviations were <5%.The method was successfully applied for the extraction and determination of bismuth in tap water and biological samples (urine and hair).  相似文献   

15.
Cloud point extraction was applied as a method for preconcentration of rhodium after formation of a complex with 2-propylpiperidine-1-carbodithioate (2-PPC), and later determined by flame atomic absorption spectrometry using TritonX-114 as surfactant. Rhodium was complexed with 2-PPC in an aqueous phase and kept for 15 min in a thermostatted bath at 40 °C. Separation of the two phases was accomplished by centrifugation for 15 min at 4000 rpm. The chemical variables affecting the cloud point extraction were optimized and successfully applied to rhodium determination in various water samples. Under optimized conditions, the preconcentration system (100 mL sample) permitted an enhancement factor of 50. The detection limits obtained under optimal conditions was 0.052 ng mL−1. The extraction efficiency was investigated at different rhodium concentrations (7.0–42.0 μg mL−1), and good recoveries (96.42–99.14%) were obtained using this method. It has been applied to the determination of rhodium in water and was compared with reported methods in terms of Student’s ‘t’-test and variance ratio ‘f’-test.  相似文献   

16.
A simple and practical preconcentration method using cloud point approach is proposed for the extraction and preconcentration of Cu (II). The analyte in the initial aqueous solution, acidified with HCl, is complexed with O,O-diethyldithiophosphate and Triton X-100 is added as a surfactant. After phase separation at 40°C based on cloud point of the mixture and dilution of the surfactant-rich phase with methanol, the enriched analyte is determined by flame atomic absorption spectrometry using conventional nebulization and the analytical wavelength used is 324.8 nm. The variables affecting the complexation and extraction steps were optimized. Under optimum conditions, preconcentration of 10 ml of sample in the presence of 0.1% (v/v) Triton X-100 permitted the detection of 0.94 ng ml−1 of Cu. Analytical graphs were rectilinear in the concentration range of 5-200 ng ml−1 and relative standard deviations were lower than 3%. The method affords recoveries in the range 97-101%. The method was successfully applied to the determination of Cu in drinking and rainwater, serum and human hair samples.  相似文献   

17.
Cloud point extraction (CPE) was used for the selective extraction and separation of cerium(IV) from aqueous solutions. The method is based on the formation of cerium(IV)-n-p-tolylbenzohydroxamic acid (n-TBHA) complex that is extracted into the micellar phase (Triton X-114) at a temperature above the cloud point temperature (CPT). After phase separation, the surfactant rich phase was diluted up to 1.0 mL and determined by inductively coupled plasma-optical emission spectrometry (ICP-OES). Under the optimum extraction conditions and instrument parameters, by preconcentration of only 10.0 mL of sample in the presence of 0.09% Triton X-114, an enhancement factor of 13.8 was obtained. The analytical curve was linear in the range of 1.5–1200 μg L−1 and the detection limit was 0.4 μg L−1. The method was applied to the determination of Ce(IV) in water samples with satisfactory results.  相似文献   

18.
A simplified micelle-mediated extraction methodology for the preconcentration of ultratrace levels of cadmium as a prior step to its determination by cold vapor atomic absorption spectrometry (CV-AAS) has been developed. The methodology is based on the cloud point extraction (CPE) of cadmium at pH 8 by using the non-ionic surfactant polyethyleneglycolmono-p-nonylphenylether (PONPE 7.5) without adding any chelating agent. Cadmium cold vapor was generated from 2 ml of the extracted surfactant-rich phase by means of sodium tetrahydroborate (3%, w/v) as a reducing agent and hydrochloric acid (0.2 mol l−1) as a carrier solution. Several important variables that affect the cloud point extraction and cold vapor cadmium generation efficiency were investigated and optimized. The preconcentration of only 50 ml of solution in the presence of 0.06% (v/v) PONPE 7.5 gives an enhancement factor of 62. The calibration graph using the preconcentration system was linear in the range of 4-100 ng l−1 with a correlation coefficient of 0.9992. Detection limit (3 s) obtained in the optimal conditions was 0.56 ng l−1. The relative standard deviation (R.S.D.) for six replicate determinations at 20 ng l−1 Cd level was 3.2%. The proposed method was successfully applied to the ultratrace determination of cadmium in water samples.  相似文献   

19.
The conditions for cloud point extraction of lead(II) from aqueous solutions were investigated and optimized. The procedure is based on the separation of Pb(II) – brillant cresyl blue (BCB) complexes into the micellar media by adding the surfactant Triton X-114. After phase separation, the surfactant-rich phase was dissolved with 1 mol L−1 HNO3 in ethanol and diluted with 1 mol L−1 HNO3 solution before lead was determined by flame atomic absorption spectrometry. Optimization of the pH, ligand and surfactant quantities, incubation time, temperature, viscosity, sample volume, and interfering ions was performed. The effects of the matrix ions were also examined. The detection limits for three times the standard deviations of the blank for lead were 7.5 μg L−1 for water samples and 0.33 μg g−1 for sediment samples. The validity of cloud point extraction was checked by employing certified reference samples of Lake Sediment IAEA-SL-1 and Sewage Sludge BCR-CRM 144R. The procedure was applied to natural waters and sediment samples with satisfactory results (recoveries >95%, relative standard deviations <6.4%).  相似文献   

20.
An ultrasound-assisted cloud point extraction (CPE) procedure was used for preconcentration and determination of vanadium by graphite furnace atomic absorption spectrometry. The vanadyl(IV) complex with ascorbic acid form a hydrophobic complex with 4-(2-pyridylazo) resorcinol (PAR) in a micelle medium, which is stable under our working conditions, and followed by its extraction into Triton X-100 surfactant-rich phase. The main factors affecting CPE efficiency, such as pH, concentrations of PAR, ascorbic acid and Triton X-100, incubation temperature, frequency and equilibration time of ultrasonic bath were investigated in detail. Under the optimum conditions, preconcentration of 10 mL sample gave a preconcentration factor of 36.4 and a detection limit of 4.0 µg kg?1. The proposed method was successfully applied to determination of vanadium in sea cucumbers with satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号