首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Experimental results are presented for continuous conversion of pretreated hardwood flour to ethanol. A simultaneous saccharification and fermentation (SSF) system comprised ofTrichoderma reesei cellulase supplemented with additional β-glucosidase and fermentation bySaccharomyces cerevisiae was used for most experiments, with data also presented for a direct microbial conversion (DMC) system comprised ofClostridium thermocellum. Using a batch SSF system, dilute acid pretreatment of mixed hardwood at short residence time(10 s, 220°C, 1% H2SO4) was compared to poplar wood pretreated at longer residence time (20 min, 160°C, 0.45% H2SO4). The short residence time pretreatment resulted in a somewhat (10–20%) more reactive substrate, with the reactivity difference particularly notable at low enzyme loadings and/or low agitation. Based on a preliminary screening, inhibition of SSF by byproducts of short residence time pretreatment was measurable, but minor. Both SSF and DMC were carried out successfully in well-mixed continuous systems, with steady-state data obtained at residence times of 0.58–3 d for SSF as well as 0.5 and 0.75 d for DMC. The SSF system achieved substrate conversions varying from 31% at a 0.58-d residence time to 86% at a 2-d residence time. At comparable substrate concentrations (4–5 g/l) and residence times (0.5–0.58 d), substrate conversion in the DMC system (77%) was significantly higher than that in the SSF system (31%). Our results suggest that the substrate conversion in SSF carried out in CSTR is relatively insensitive to enzyme loading in the range 7–25 U/g cellulose and to substrate concentration in the range of 5–60 g/L cellulose in the feed.  相似文献   

2.
Wheat straw was pretreated with dilute (0.5%) sulfuric acid at 140°C for 1 h. Pretreated straw solids were washed with deionized water to neutrality and then stored frozen at –20°C. The approximate composition of the pretreated straw solids was 64% cellulose, 33% lignin, and 2% xylan. The cellulose in the pretreated wheat straw solids was converted to ethanol in batch simultaneous saccharification and fermentation experiments at 37°C using cellulase enzyme fromTrichoderma reesei (Genencor 150 L) with or without supplementation with β–glucosidase fromAspergillus niger (Novozyme 188) to produce glucose sugar and the yeastSaccharomyces cerevisiae to ferment the glucose into ethanol. The initial cellulose concentrations were adjusted to 7.5, 10, 12.5, 15, 17.5, and 20% (w/w). Since wheat straw particles do not form slurries at these concentrations and cannot be mixed with conventional impeller mixers used in laboratory fermenters, a simple rotary fermenter was designed and fabricated for these experiments. The results of the simultaneous saccharification and fermentation (SSF) experiments indicate that the cellulose in pretreated wheat straw can be efficiently fermented into ethanol for up to a 15% cellulose concentration (24.4% straw concentration).  相似文献   

3.

Previous shake flask and stirred tank evaluations of temperature tolerant (37–43°C) yeasts in simultaneous saccharification and fermentation (SSF) on Sigmacell-50 cellulose substrates to ethanol have identified several good microorganisms for further SSF studies (27). Of these, the glucose fermenting yeastCandida acidothermophilum, C. brassicae, Saccharomyces cerevisiae, S. uvarum, and a mixed culture of the cellobiose fermenting yeastBrettanomyces clausenii withS. cerevisiae as a control were chosen for shake flask SSF screening experiments with pretreated wheat straw. This study indicates that theSaccharomyces strainscerevisiae anduvarum, give very good performance at high cellulase loadings or when supplemented with Novo-188 β-glucosidase. In fact, with the higher enzyme loadings these yeast will give complete conversion of cellulose to ethanol. Yet at the lower, more economical enzyme loadings, the mixed culture ofBrettanomyces clausenii andS. cerevisiae performs better than any single yeast.

  相似文献   

4.
This work presents a continuous simultaneous saccharification and fermentation (SSF) process to produce ethanol from starch using glucoamylase and Saccharomyces cerevisiae co-immobilized in pectin gel. The enzyme was immobilized on macroporous silica, after silanization and activation of the support with glutaraldehyde. The silica–enzyme derivative was co-immobilized with yeast in pectin gel. This biocatalyst was used to produce ethanol from liquefied manioc root flour syrup, in three fixed bed reactors. The initial reactor yeast load was 0.05 g wet yeast/ml of reactor (0.1 g wet yeast/g gel), used in all SSF experiments. The enzyme concentration in the reactor was defined by running SSF batch assays, using different amount of silica–enzyme derivative, co-immobilized with yeast in pectin gel. The chosen reactor enzyme concentration, 3.77 U/ml, allowed fermentation to be the rate-limiting step in the batch experiment. In this condition, using initial substrate concentration of 166.0 g/l of total reducing sugars (TRS), 1 ml gel/1 ml of medium, ethanol productivity of 8.3 g/l/h was achieved, for total conversion of starch to ethanol and 91% of the theoretical yield. In the continuous runs, feeding 163.0 g/l of TRS and using the same enzyme and yeast concentrations used in the batch run, ethanol productivity was 5.9 g ethanol/l/h, with 97% of substrate conversion and 81% of the ethanol theoretical yield. Diffusion effects in the extra-biocatalyst film seemed to be reduced when operating at superficial velocities above 3.7 × 10−4 cm/s.  相似文献   

5.
Aqueous-ammonia-steeped switchgrass was subject to simultaneous saccharification and fermentation (SSF) in two pilot-scale bioreactors (50- and 350-L working volume). Switchgrass was pretreated by soaking in ammonium hydroxide (30%) with solid to liquid ratio of 5 L ammonium hydroxide per kilogram dry switchgrass for 5 days in 75-L steeping vessels without agitation at ambient temperatures (15 to 33 °C). SSF of the pretreated biomass was carried out using Saccharomyces cerevisiae (D5A) at approximately 2% glucan and 77 filter paper units per gram cellulose enzyme loading (Spezyme CP). The 50-L fermentation was carried out aseptically, whereas the 350-L fermentation was semiaseptic. The percentage of maximum theoretical ethanol yields achieved was 73% in the 50-L reactor and 52–74% in the 350-L reactor due to the difference in asepsis. The 350-L fermentation was contaminated by acid-producing bacteria (lactic and acetic acid concentrations approaching 10 g/L), and this resulted in lower ethanol production. Despite this problem, the pilot-scale SSF of aqueous-ammonia-pretreated switchgrass has shown promising results similar to laboratory-scale experiments. This work demonstrates challenges in pilot-scale fermentations with material handling, aseptic conditions, and bacterial contamination for cellulosic fermentations to biofuels.  相似文献   

6.
Corn stover is emerging as a viable feedstock for producing bioethanol from renewable resources. Dilute-acid pretreatment of corn stover can solubilize a significant portion of the hemicellulosic component and enhance the enzymatic digestibility of the remaining cellulose for fermentation into ethanol. In this study, dilute H2SO4 pretreatment of corn stover was performed in a steam explosion reactor at 160°C, 180°C, and 190°C, approx 1 wt% H2SO4, and 70-s to 840-s residence times. The combined severity (Log10 [R o ] - pH), an expression relating pH, temperature, and residence time of pretreatment, ranged from 1.8 to 2.4. Soluble xylose yields varied from 63 to 77% of theoretical from pretreatments of corn stover at 160 and 180°C. However, yields >90% of theoretical were found with dilute-acid pretreatments at 190°C. A narrower range of higher combined severities was required for pretreatment to obtain high soluble xylose yields when the moisture content of the acid-impregnated feedstock was increased from 55 to 63 wt%. Simultaneous saccharification and fermentation (SSF) of washed solids from corn stover pretreated at 190°C, using an enzyme loading of 15 filter paper units (FPU)/g of cellulose, gave ethanol yields in excess of 85%. Similar SSF ethanol yields were found using washed solid residues from 160 and 180°C pretreatments at similar combined severities but required a higher enzyme loading of approx 25 FPU/g of cellulose.  相似文献   

7.
In this work, the use of organic fraction from municipal solid waste (MSW) as substrate for ethanol production based on enzymatic hydrolysis was evaluated. MSW was subjected to a thermal pretreatment (active hygienization) at 160?°C from 5 to 50 min. The organic fiber obtained after 30 min was used as substrate in a simultaneous saccharification and fermentation (SSF) and fed-batch SSF process using cellulases and amylases. In a fed-batch mode with 25% (w/w) substrate loading, final ethanol concentration of 30 g/L was achieved (60% of theoretical). In these conditions, more than 160 L of ethanol per ton of dry matter could be produced from the organic fraction of MSW.  相似文献   

8.
Different treatments to improve the thermotolerance of fermenting yeasts for simultaneous ethanol saccharification and fermentation process of cellulosic materials have been examined. Yeasts of the generaSaccharomyces andKluyveromyces were tested for growth and fermentation at progressively higher temperatures in the range of 42–47°C. The best results were obtained withK. marxianus LG, which was then submitted to different treatments in order to achieve thermotolerant clones. A total of 35 new clones were obtained that dramatically improved the SSF of 10% Solka-floc substrate at 45°C when compared to the original strain, some with ethanol concentrations as high as 33 g/L.  相似文献   

9.
Ethanol production from Jerusalem artichoke was studied using inulinase and Z.mobilis by simultaneous saccharification and fermentation (SSF) process. The SSF process showed higher ethanol yield and productivity than the acid or enzymatic prehydrolyzed two-step process. The optimum temperature and inulinase concentration for SSF were 35°C and 0.25% (v/w, 4.4 units/g of sugar), respectively. In order to operate the SSF process in a continuous mode, inulinase and Z.mobilis cells were coimmobilized in alginate beads, using chitin as a matrix for enzyme immobilization. The maximum ethanol productivity of the continuous SSF process was 55.1 g/L/h, with 55% conversion yield. At the conversion yield of 90%, the productivity was 32.7 g/L/h. The continuous SSF system could be operated stably over 2 wk with an ethanol concentration of 48.6 g/L (95% of theoretical yield).  相似文献   

10.
Olive tree wood and sunflower stalks are agricultural residues largely available at low cost in Mediterranean countries. As renewable lignocellulosic materials, their bioconversion may allow both obtaining a value-added product, for fuel ethanol, and facilitating their elimination. In this work, the ethanol production from olive tree wood and sunflower stalks by a simultaneous saccharification and fermentation (SSF) process is studied. As a pretreatment, steam explosion at different temperatures was applied. The water insoluble fractions of steam-pretreated sunflower stalks and steamed, delignified olive tree wood were used as substrates at 10% w/v concentration for an SSF process by a cellulolytic commercial complex and Saccharomyces cerevisiae. After 72-h fermentation, ethanol concentrations up to 30 g/L were obtained in delignified steam-pretreated olive tree wood at 230°C and 5 min. Sunflower stalks pretretated at 220°C and 5 min gave maximum ethanol concentrations of 21 g/L in SSF experiments.  相似文献   

11.
Laccase production by solid-state fermentation (SSF) using an indigenously isolated white rot basidiomycete Ganoderma sp. was studied. Among the various agricultural wastes tested, wheat bran was found to be the best substrate for laccase production. Solid-state fermentation parameters such as optimum substrate, initial moisture content, and inoculum size were optimized using the one-factor-at-a-time method. A maximum laccase yield of 2,400 U/g dry substrate (U/gds) was obtained using wheat bran as substrate with 70% initial moisture content at 25°C and the seven agar plugs as the inoculum. Further enhancement in laccase production was achieved by supplementing the solid-state medium with additional carbon and nitrogen source such as starch and yeast extract. This medium was optimized by response surface methodology, and a fourfold increase in laccase activity (10,050 U/g dry substrate) was achieved. Thus, the indigenous isolate seems to be a potential laccase producer using SSF. The process also promises economic utilization and value addition of agro-residues.  相似文献   

12.
The olive pulp fraction contained in the residue generated in olive oil extraction by a two-step centrifugation process can be upgraded by using the cellulose fraction to produce ethanol and recovering high value phenols (tyrosol and hydroxytyrosol). Olive pulp was pretreated in a laboratory scale stirred autoclave at different temperatures (150–250°C). Pretreatment was evaluated regarding cellulose recovery, enzymatic hydrolysis effectiveness ethanol production by a simultaneous saccharification and fermentation process (SSF), and phenols recovery in the filtrate. The pretreatment of olive pulp using water at temperatures between 200°C and 250°C enhanced enzymatic hydrolysis. Maximum ethanol production (11.9 g/L) was obtained after pretreating pulp at 210°C in a SSF fed-batch procedure. Maximum hydroxytyrosol recovery was obtained in the liquid fraction when pretreated at 230°C.  相似文献   

13.
A mixed solids waste (MSW) feedstock, comprising construction lumber waste (35% oven-dry basis), alm ond treeprunings (20%), wheat straw (20%), office waste paper (12.5%), and newsprint (12.5%), was converted to ethanol via dilute-acid pretreatment followed by enzymatic hydrolysis and yeast fermentation. The MSW was pretreated with dilute sulfuricacid (0.4% w/w) at 210°C for 3 min in a 4-L stea mexplosion reactor, then washed with water to recover the solubilized hemicellulose. The digestibility of water-washed, pretreated MSW was 90% in batch enzymatic hydrolysis at 66 FPU/g cellulose. Using an enzyme-recycle bioreactor system, greater than 90% cellulose hydrolysis was achieved at a net enzyme loading of about 10 FPU/g cellulose. Enzyme recycling using mebrane filtration and a fed-batch fermentation technique is a promising option for significantly reducing the cost of enzyme in cellulose hydrolysis. The hexosesugars were readily fermentable using a Saccharomyces cerevisiae yeast strain that was adapted to the hydrolysate. Solid residue after enzyme digestion was subjected to various furnace experiments designed to assess the fouling and slagging characteristics. Results of these analyses suggest the residue to be of a low to moderate slagging and fouling type if burned by itself.  相似文献   

14.
A simple and effective method of treatment of lignocellulosic material was used for the preparation of corn cob for the production of 2,3-butanediol byKlebsiella oxytoca ATCC 8724 in a simultaneous saccharification and fermentation process. During the treatment, lignin, and alkaline extractives were solubilized and separated from cellulose and hemicellulose fractions by dilute ammonia (10%) steeping. Hemicellulose was then hydrolyzed by dilute hydrochloric acid (1%, wJv) hydrolysis at 100°C at atmospheric pressure and separated from cellulose fraction. The remaining solid, with 90% of cellulose, was then used as the substrate. A butanediol concentration of 25 g/L and an ethanol concentration of 7 g/L were produced byK. oxytoca from 80 g/L of corn cob cellulose with a cellulase dosage of 8.5 IFPU/g corn cob cellulose after 72 h of SSF. With only dilute acid hydrolysis, a butanediol production rate of 0.21 g/L/h was obtained that is much lower than the case in which corn cob was treated with ammonia steeping prior to acid hydrolysis. The butanediol production rate for the latter was 0.36 g/L/h.  相似文献   

15.
Citric acid (CA) production has been conducted through a careful strain selection, physical–chemical optimization and mutation. The aim of this work was to optimize the physical–chemical conditions of CA production by solid-state fermentation (SSF) using the Aspergillus niger LPB BC strain, which was isolated in our laboratory. The parental and mutant strain showed a good production of CA using citric pulp (CP) as a substrate. The physical–chemical parameters were optimized and the best production was reached at 65% moisture, 30 °C and pH 5.5. The influence of the addition of commercial and alternative sugars, nitrogen sources, salts, and alcohols was also studied. The best results (445.4 g of CA/kg of CP) were obtained with sugarcane molasses and 4% methanol (v/w). The mutagenesis induction of LPB BC was performed with UV irradiation. Eleven mutant strains were tested in SSF where two mutants showed a higher CA production when compared to the parental strain. A. niger LPB B3 produced 537.6 g of CA/kg of CP on the sixth day of fermentation, while A. niger LPB B6 produced 616.5 g of CA/kg of CP on the fourth day of fermentation, representing a 19.5% and 37% gain, respectively.  相似文献   

16.
Astrain of Clostridium thermoaceticum (ATCC 49707) was evaluated for its homoacetate potential. This thermophilic anaerobe best produces acetate from glucose at pH 6.0 and 59°C with a yield of 83% of theoretical. Enzyme hydrolysis of two substrates, a-cellulose and a pulp mill sludge, yielded 68% and 70% digestion, respectively. The optimum conditions for the simultaneous saccharification and fermentation (SSF) were substrate dependent: 55°C, pH 6.0 for α-cellulose, and 55°C, pH 5.5 for the pulp mill sludge. In the SSF with α-cellulose, the overall yield of acetate was strongly influenced by the enzyme loading. In a fed-batch operation of SSF with α-cellulose, an overall acetic acid yield of 60 wt% was obtained. Among the factors limiting the yields were incomplete digestion by the enzyme and the end-product inhibition. In the SSF of pulp mill sludge, inhibitors present in the sludge severely limited bacterial action. A large accumulation of glucose developed over the entire process, changing the intended SSF operation into a separate hydrolysis and fermentation operation. Despite a long lag phase of microbial growth, a terminal yield of 85% was obtained with this substrate.  相似文献   

17.
A total of 27 yeast strains belonging to the groupsCandida, Saccharomyces, andKluyveromyces were screened for their ability to grow and ferment glucose at temperatures ranging 32-45°C. K. marxianus andK. fragilis were found to be the best ethanol producing organisms at the higher temperature tested and, so, were selected for subsequent simultaneous saccharification and fermentation (SSF) studies.  相似文献   

18.
The cellulose reactivity of two lignocellulosic feedstocks, switchgrass and poplar, was evaluated under straight saccharification (SS) and simultaneous saccharification and fermentation (SSF) conditions following dilute sulfuric acid pretreatments designed for optimum xylose yields. The optimum pretreatment conditions, within the constraints of the experimental system (Parr batch reactor), were 1.2% acid, 180°C, and 0.5 min for switchgrass and 1% acid, 180°C, and 0.56 min for poplar. The cellulase enzyme preparation was from Trichoderma reesei and fermentations were done with Saccharomyces cerevisiae. Time courses for SS were monitored as the sum of glucose and cellobiose; those for SSF as the sum of glucose, cellobiose, and ethanol. Percentage conversions under SS conditions were 79.1% and 91.4% for the pretreated poplar and switchgrass feedstocks, respectively. Analogous values under SSF conditions were 73.0% and 90.3% for pretreated poplar and switchgrass, respectively.  相似文献   

19.
Among the lignocellulosic substrates tested, wheat bran supported a high xylanase (EC 3.2.1.8) secretion by Humicola lanuginosa in solid-state fermentation (SSF). Enzyme production reached a peak in 72 h followed by a decline thereafter. Enzyme production was very high (7832 U/g of dry moldy bran) when wheat bran was moistened with tap water at a substrate-to-moistening agent ratio of 1:2.5 (w/v) and an inoculum level of 3 × 106 spores/10 g of wheat bran at a water activity (a w ) of 0.95. Cultivation of the mold in large enamel trays yielded a xylanase titer comparable with that in flasks. Parametric optimization resulted in a 31% increase in enzyme production in SSF. Xylanase production was approx 23-fold higher in SSF than in submerged fermentation (SmF). A threshold constitutive level of xylanase was secreted by H. lanuginosa in a medium containing glucose as the sole carbon source. The enzyme was induced by xylose and xylan. Enzyme synthesis was repressed beyond 1.0% (w/v) xylose in SmF, whereas it was unaffected up to 3.0% (w/w) in SSF, suggesting a minimization of catabolite repression in SSF.  相似文献   

20.
Simultaneous saccharification and fermentation (SSF) processes for producing ethanol from lignocellulose are capable of improved hydrolysis rates, yields, and product concentrations compared to separate hydrolysis and fermentation (SHF) systems, because the continuous removal of the sugars by the yeasts reduces the end-product inhibition of the enzyme complex. Recent experiments using Genencor 150L cellulase and mixed yeast cultures have produced yields and concentrations of ethanol from cellulose of 80% and 4.5%, respectively. The mixed culture was employed because B.clausenii has the ability to ferment cellobiose (further reducing end-product inhibition), while the brewing yeastS. cerevisiae provides a robust ability to ferment the monomeric sugars. These experimental results are combined with a process model to evaluate the economics of the process and to investigate the effect of alternative processes, conditions, and organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号