首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 340 毫秒
1.
锂嵌入[Mn~2O~4]晶格形成嵌合物Li~xMn~2O~4。通过对不同温度(20~45℃)下的Li/Li~xMn~2O~4电池的库仑滴定曲线[EmF(x)]的测定, 可以求得该嵌入过程的嵌入熵、焓和自由能等热力学函数。在x<1.5时, 表现为很高的偏摩尔自由能, 在x=1/2和x=1时, 嵌入熵和焓表现为不连续性。热力学函数值与Li~xMn~2O~4的晶体结构关联。  相似文献   

2.
锂嵌入[Mn_2O_4]晶格形成嵌合物Li_xMn_2O_4.通过对不同温度(20~45℃)下的Li/Li_xMn_2O_4电池的库仑滴定曲线[EMF(x)]的测定,可以求得该嵌入过程的嵌入熵、焓和自由能等热力学函数.在x<1.5时,表现为很高的偏摩尔自由能,在x=1/2和x=1时,嵌入熵和焓表现为不连续性.热力学函数值与Li_xMn_2O_4的晶体结构关联.  相似文献   

3.
通过溶解度法研究了萘从水到水-叔丁醇(TBA)混合溶剂中的标准迁移热力学性质.结果表明, 标准迁移自由能随叔丁醇摩尔分数x(TBA)的增加表现出复杂的下降趋势.标准迁移熵和标准迁移焓呈现双峰变化.迁移熵和迁移焓的双峰变化, 表明系列H2O-TBA混合溶剂的微观结构经历了从相对的有序到无序到再有序、再无序、再有序的变化过程;H2O-TBA混合溶剂中除了在富水区存在着笼合物特殊结构外, 在x(TBA) 约为0.08处还存在着一相对有序的结构.  相似文献   

4.
在温度为278.15-318.15K范围内测定了含有不同Li~2B~4O~7和CaCl~2浓度测试液的无液接电池:Pt,H~2(101.325kPa)|Li~2B~4O~7(m~1),CaCl~2(m~2)|AgCl-Ag的电动势E(V)。在Pitzer电解质溶液理论基础上,用线性外推法确定离子对[CaB(OH)~4]^+的标准缔合常数K~d,并得到K~d随温度T变化的经验公式:pK~d=0.6857-359.72/T-4.632×10^-^3T。同时计算得到了离子对缔合过程的热力学函数,指出形成该离子对的推动力是缔合熵。  相似文献   

5.
焓-熵补偿的热力学解释   总被引:1,自引:0,他引:1  
采用热力学方法考察了相变过程、化学反应以及其它相关过程中可能存在的焓.熵补偿。补偿效应可以简单地分为两种类型——温度扰动引起的补偿和其它参数引起的补偿。温度扰动引起的补偿方程如下:△H(T2)=△Cp/△CT1△S(T2)+[△H(T1)-△Cp/△CT1△S(T1)]其它参数引起的补偿方程具有相同的形式:△H=T△S-△V/β讨论了补偿温度、多参数扰动及补偿效应成立的条件。结果表明,焓变和熵变存在着热力学上的固有联系,其是否表现出线性补偿关系则与体系的细致过程有关。  相似文献   

6.
用中和法合成了氨基酸离子液体(AAIL)1-己基-3-甲基苏氨酸盐[C6mim][Thr],并用核磁共振氢谱(1H NMR)和核磁共振碳谱(13C NMR)进行了表征。以苯甲酸为参考物质,用恒温热重法确定了AAIL[C6mim][Thr]的蒸汽压和在平均温度下(Tav= 438.15 K)的蒸发焓(ΔglHm? (Tav) =128.5 ± 6.0 kJ·mol-1)。利用Verevkin等人提出的方法计算得到AAIL[C6mim][Thr]气态和液态的恒压热容差(ΔglCpm? = -70.8 J·K-1·mol-1),进而计算了不同温度的蒸发焓,其中参考温度(298.15 K)下的蒸发焓ΔglHm? (298.15 K) = 138.4 kJ·mol-1,只比应用我们提出的蒸发焓理论模型估算值大1.6 kJ·mol-1,小于恒温热重法的实验误差3.0 kJ·mol-1,说明这个蒸发焓的理论模型有一定的合理性。借助Clausius-Clapeyron方程估算了AAIL[C6mim][Thr]的假想的正常沸点Tb= 522.07 K,以及沸点的蒸发熵ΔglSm? (Tb) = 228.5 J·K-1·mol-1,进一步得到了不同温度的蒸发熵和蒸发自由能ΔglGm? (T),其结果表明蒸发自由能随着温度的上升而减小,达到沸点温度Tb时变为零,而蒸发熵则随着温度上升而增大,是AAIL[C6mim][Thr]蒸发过程的驱动力。  相似文献   

7.
合成了6种固态含能配合物M(BTA)(phen)m·nH2O(M=Mn,Co,Ni,Zn,m=2,n=5;M=Cu,m=2,n=1;M=Pb,m=1,n=1;BTA=N,N′-二四唑胺,phen=1,10-菲咯啉),并对它们进行了表征.用RD 496-CK2000型微热量计测定了298.15 K下各配合物的液相生成反应焓ΔrHmθ;改变反应温度,在实验和计算基础上,得到了液相生成反应的热力学参数(活化焓、活化熵和活化自由能),速率常数和动力学参数(表现活化能、频率因子和反应级数).  相似文献   

8.
合成了6种固态含能配合物M(BTA)(phen)m&#183;nH2O(M=Mn,Co,Ni,Zn,m=2,n=5;M=Cu,m=2,n=1;M=Pb,m=1,n=1;BTA=N,N′-二四唑胺,phen=1,10-菲咯啉),并对它们进行了表征.用RD 496-CK2000型微热量计测定了298.15 K下各配合物的液相生成反应焓ΔrHmθ;改变反应温度,在实验和计算基础上,得到了液相生成反应的热力学参数(活化焓、活化熵和活化自由能),速率常数和动力学参数(表现活化能、频率因子和反应级数).  相似文献   

9.
在不同离子强度的高氯酸钠水溶液中,用分光光度法测量自由卟啉H_2T_(β-N-EAES)PyPBr_4(简记为H_2P~(4+))与Gu(Ⅱ)离子的配位反应动力学,探讨高氯酸钠对Cu(Ⅱ)离子嵌入自由卟啉反应的催化本质.在给定条件下,高氯酸根与自由卟啉的缔合数n为1;缔合平衡常数K_0=3.70±0.42dm~3.mol~(-1).配位反应实验动力学方程为d[Cu(Ⅱ)P~(4+)]/dt=5.55×10~5γCu~2+γH_2P~4+γ(3)[ClO_4~-]~3[Cu~(2+)][H_2P]_总/(1.00+10~(2.02{H+}+10~(4.36{H~+}~2)、反应的活化能E=53.30kJ·mol~(-1),活化焓变△H~ =50.31kJ·mol~(-1),活化熵变△S~ =-77.65J·mol~(-1)·K~(-1).提出了金属卟啉生成反应中的ClO_4~-催化卟啉环变形的反应机理.  相似文献   

10.
在不同离子强度的高氯酸钠水溶液中, 用分光光度法测量自由卟啉H2Ts-n-EAESPyPBr4(简记为H2P^4^+)与Cu(II)离子的配位反应动力学, 探讨高氯酸钠对Cu(II)离子嵌入自由卟啉反应的催化本质。在给定条件下, 高氯酸根与自由卟啉的缔合数n为1; 缔合平衡常数Ko=3.70±0.42dm^3.mol^-^1。配位反应实验动力学方程为d[Cu(II)P^4^+/dt=5.55×10^5γCu^2^+γH2P^4^+γ^8ClO4^-[ClO4^-]^3[Cu^2^+][H2P]总/(1.00+10^2^.^0^2{H^+}+10^4^.^3^6{H^+}^2, 反应的活化能E=53.30kJ.mol^-^1,活化焓变△H≠=50.31kJ.mol^-^1, 活化熵变△S≠=-77.65J.mol^-^1.K^-^1。提出了金属卟啉生成反应中的ClO4^-催化卟啉环变形的反应机理。  相似文献   

11.
锂离子电池阴极材料尖晶石结构Li1+xMn2—xO4的研究   总被引:29,自引:1,他引:29  
吴晓梅  杨清河 《电化学》1998,4(4):365-371
本文报导尖晶石结构阴极材料Li1+xMn2-xO4(O<x<1)的制备方法,讨论温度及原料对合成材料的电化学特性的影响,用电化学及结构化学理论研究了化学计量尖晶石结构LiMn2O4中,过量锂占据晶格中锰的位置,对电池初始容量及循环寿命产生的影响.  相似文献   

12.
The cathode in rechargeable lithium-ion batteries operates by conventional intercalation; Li+ is extracted from LiCoO2 on charging accompanied by oxidation of Co3+ to Co4+; the process is reversed on discharge. In contrast, Li+ may be extracted from Mn4+-based solids, e.g., Li2MnO3, without oxidation of Mn4+. A mechanism involving simultaneous Li and O removal is often proposed. Here, we demonstrate directly, by in situ differential electrochemical mass spectrometry (DEMS), that O2 is evolved from such Mn4+ -containing compounds, Li[Ni(0.2)Li(0.2)Mn(0.6)]O2, on charging and using powder neutron diffraction show that O loss from the surface is accompanied by diffusion of transition metal ions from surface to bulk where they occupy vacancies created by Li removal. The composition of the compound moves toward MO(2). Understanding such unconventional Li extraction is important because Li-Mn-Ni-O compounds, irrespective of whether they contain Co, can, after O loss, store 200 mAhg(-1) of charge compared with 140 mAhg(-1) for LiCoO(2).  相似文献   

13.
锂离子二次电池锰系正极材料   总被引:7,自引:0,他引:7  
卫敏  路艳罗  杨文胜  段雪 《化学通报》2002,65(8):516-526
综述了锂离子二次电池锰系正极材料的研究进展,侧重于阐述尖晶石型及层状锰酸锂的制备、结构与电化学性能之间的关系。  相似文献   

14.
锂离子电池电极材料研究进展   总被引:44,自引:0,他引:44  
本文综述了锂离子电池中正、负电极材料的制备、结构与电化学性能之间的关系。正极材料包括嵌锂的层状L ixMO 2 和尖晶石型L ixM 2O 4 结构的过渡金属氧化物(M =Co、N i、M n、V ) , 负极材料包括石墨、含氢碳、硬碳和金属氧化物。侧重于阐述控制锂离子电池循环过程中可逆嵌锂容量和稳定性的嵌锂电极材料的结构性质。给出118 篇参考文献。  相似文献   

15.
Reaction of the Single Molecule Magnet [Mn(12)O(12)(CH(3)CO(2))(16)(H(2)O)(4)] (Mn(12)) with mesogenic dendritic ligands Li (i = 4, 5) quantitatively yields functional clusters [Mn(12)O(12)(Li-H)(16)(H(2)O)(4)] (i = 4, 5) that self-organize into a thermotropic SmA-type liquid crystalline phase. The perturbation of the molecular interface by methylation of the terminal mesogenic cyanobiphenyl groups induces a significant decrease of the clearing temperature without affecting the magnetic properties and the supramolecular organization of the Mn(12)-based clusters.  相似文献   

16.
The high capacity of Ni-rich Li[Ni(1-x)M(x)]O(2) (M = Co, Mn) is very attractive, if the structural instability and thermal properties are improved. Li[Ni(0.5)Mn(0.5)]O(2) has good thermal and structural stabilities, but it has a low capacity and rate capability relative to the Ni-rich Li[Ni(1-x)M(x)]O(2). We synthesized a spherical core-shell structure with a high capacity (from the Li[Ni(0.8)Co(0.1)Mn(0.1)]O(2) core) and a good thermal stability (from the Li[Ni(0.5)Mn(0.5)]O(2) shell). This report is about the microscale spherical core-shell structure, that is, Li[Ni(0.8)Co(0.1)Mn(0.1)]O(2) as the core and a Li[Ni(0.5)Mn(0.5)]O(2) as the shell. A high capacity was delivered from the Li[Ni(0.8)Co(0.1)Mn(0.1)]O(2) core, and a high thermal stability was achieved by the Li[Ni(0.5)Mn(0.5)]O(2) shell. The core-shell structured Li[(Ni(0.8)Co(0.1)Mn(0.1))(0.8)(Ni(0.5)Mn(0.5))(0.2)]O(2)/carbon cell had a superior cyclability and thermal stability relative to the Li[Ni(0.8)Co(0.1)Mn(0.1)]O(2) at the 1 C rate for 500 cycles. The core-shell structured Li[(Ni(0.8)Co(0.1)Mn(0.1))(0.8)(Ni(0.5)Mn(0.5))(0.2)]O(2) as a new positive electrode material is a significant breakthrough in the development of high-capacity lithium batteries.  相似文献   

17.
We have successfully synthesized a spherical core-shell structure based on Li[(Ni0.8Co0.2)0.8(Ni0.5Mn0.5)0.2]O2 via a coprecipitation route. According to the careful examination by scanning electron microscopy (SEM), transmission electron microscopy energy-dispersive spectroscopy (TEM-EDS), and X-ray diffraction (XRD), it was found that the core-shell particle consisted of Li[Ni0.8Co0.2]O2 as the core and Li[Ni0.5Mn0.5]O2 as the shell, of which the thickness was estimated to be 1 to approximately 1.5 microm. Both the core and shell were dense as confirmed by SEM. Though the core-shell-structured Li[(Ni0.8Co0.2)0.8(Ni0.5Mn0.5)0.2]O2 delivered a slightly reduced initial discharge capacity, the capacity retention and thermal stability were significantly improved relative to those of the Li[Ni0.8Co0.2]O2 electrode without the Li[Ni0.5Mn0.5]O2 shell. The carbon/Li[Ni0.8Co0.2]O2 pouch cell underwent an explosive ignition during the nail penetration test, whereas the carbon/Li[(Ni0.8Co0.2)0.8(Ni0.5Mn0.5)0.2]O2 cell remained stable, demonstrating the superior thermal stability of the core-shell electrode. As a new positive electrode material, the core-shell-structured Li[(Ni0.8Co0.2)0.8(Ni0.5Mn0.5)0.2]O2 is a significant breakthrough in the development of high-capacity lithium secondary batteries.  相似文献   

18.
The partitioning behavior of pentacyanonitrosilmetallate complexes[Fe(CN) 5NO] (2-), [Mn(CN) 5NO] (3-), and [Cr(CN) 5NO] (3-)has been studied in aqueous two-phase systems (ATPS) formed by adding poly(ethylene oxide) (PEO; 4000 g mol (-1)) to an aqueous salt solution (Li 2SO 4, Na 2SO 4, CuSO 4, or ZnSO 4). The complexes partition coefficients ( K complex) in each of these ATPS have been determined as a function of increasing tie-line length (TLL) and temperature. Unlike the partition behavior of most ions, [Fe(CN) 5NO] (2-) and [Mn(CN) 5NO] (3-) anions are concentrated in the polymer-rich phase with K values depending on the nature of the central atom as follows: K [ F e ( C N ) 5 N O ] 2 - > K [ M n ( C N ) 5 N O ] 3 - > K [ C r ( C N ) 5 N O ] 3 - . The effect of ATPS salts in the complex partitioning behavior has also been verified following the order Li 2SO 4 > Na 2SO 4 > ZnSO 4. Thermodynamic analysis revealed that the presence of anions in the polymer-rich phase is caused by an EO-[M(CN) 5NO] ( x- ) (M = Fe, Mn, or Cr) enthalpic interaction. However, when this enthalpic interaction is weak, as in the case of the [Cr(CN) 5NO] (3-) anion ( K [ C r ( C N ) 5 N O ] 3 - < 1), entropic driving forces dominate the transfer process, then causing the anions to concentrate in the salt-rich phase.  相似文献   

19.
Li(x)Mg(0.1)Ni(0.4)Mn(1.5)O(4) spinel (P4(3)32) was chemically and electrochemically lithiated in the range 1 < x 相似文献   

20.
Antifluorite-type lithium chromium oxide nitrides were prepared by solid-state reaction of Li(3)N, Li(2)O, and Cr(2)N. Depending on the reaction time and starting Li/Cr and O/Cr ratios, either an ordered or a disordered phase (or mixtures of both) is obtained. The formation of the former is favored by short reaction times and low Cr/O ratios whereas the formation of the latter is favored by higher Cr/O ratios and longer reaction times. The two phases were characterized, and the first one was confirmed to be the already reported Li(14)Cr(2)N(8)O phase, whereas the stoichiometry of the second is Li(10)CrN(4)O(2). Interestingly, even if both contain cationic vacancies in the structure, electrochemical lithium intercalation could only be achieved for Li(10)CrN(4)O(2). This phase exhibits a reversible capacity of 160 mAh/g very stable upon cycling. Bond valence and first-principles DFT calculations were carried out to understand the absence of lithium insertion in Li(14)Cr(2)N(8)O. Li-Li repulsion and destabilization of the tetrahedral CrN(4) units induced by occupation of the potential sites, as well as the absence of energetically favorable pathways for transport of the ions to these sites, are suggested to be the reasons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号