首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用XRD技术考察了热解温度及升温速率对煤焦微晶结构的影响;使用Shi等的方法计算了煤焦微晶结构参数,获取了950℃~1400℃气化炉下煤焦微晶结构的特征及变化规律;结合热重分析得到了热解温度相关参数影响煤焦气化活性的机理。研究表明,热解温度升高,堆垛高度(Lc)明显增大而微晶尺寸(La)变化不大,说明煤焦基本晶格单元主要是进行纵向的接合缩聚,而晶格并没进行明显的内部生长,煤焦的微晶结构随热解温度的提高向有序化发展,但没达到石墨化的程度;慢速热解煤焦的气化反应活性明显低于相同温度下快速热解煤焦,慢速热解中,由于煤焦在高温下停留时间较长,而使煤焦微晶进行结构重整而变得更加有序,芳香单元失去边缘活性位,煤焦气化活性降低。  相似文献   

2.
煤焦在CO2气化过程中微孔结构的变化   总被引:1,自引:0,他引:1  
  相似文献   

3.
以晋城无烟煤和生物质(肉骨粉Meat and Bone Meal:MBM)为原料,在固定床上采用快速热解法制备了煤和生物质焦样。采用扫描电子显微镜结合X射线能谱分析仪(SEM-EDX)分析了煤焦和MBM焦的表面形态和组成;在热天平上采用等温热重法进行了煤焦/MBM焦混合物的水蒸气气化研究。实验结果表明,煤/MBM焦混合物的共气化实验碳转化率高于两者不存在协同作用时的计算值,这是由于MBM焦含有较多的Na、Ca等元素,这些物质对煤焦气化起到了催化作用。当对MBM焦进行脱灰处理后,其气化反应性显著下降。混合物中MBM焦的质量分数在20%~80%时,随着MBM焦含量的增加,混合物中的煤焦反应性相应提高。  相似文献   

4.
基于滴管炉制备内蒙褐煤快速热解焦,借助高频炉开展快速热解焦与CO_2的气化实验,考察了煤焦气化过程的结构演变特性。结果表明,随着反应的进行,气化半焦的石墨化程度不断增加,但未达到天然石墨的有序化程度;比表面积先增大后减小,而平均孔径总体呈相反的变化趋势;气化半焦的粒径在反应前期逐渐减小,当转化率大于74%,半焦粒径逐渐增大,归因于气化后期部分颗粒的黏结。  相似文献   

5.
在常压、1000℃下,测定了两种不同煤化程度的无烟煤焦和一种脱灰无烟煤焦的水蒸气和CO2的气化反应性。并以N2和CO2为吸附质,测定了原煤焦的孔结构特征;以CO2为吸附质,测定了无烟煤焦在气化过程中微孔结构的变化。考察了矿物质对无烟煤焦孔结构变化的影响。结果表明,水蒸气和CO2对无烟煤焦的气化反应都有微孔的产生和扩展作用。无烟煤焦水蒸气气化反应性与煤焦的微孔比表面积成正比,但无烟煤焦CO2气化反应性与煤焦的微孔比表面积没有依存关系。煤中矿物质对无烟煤焦气化过程中孔结构的变化不产生影响。  相似文献   

6.
基于热重分析仪开展负载碳酸钠神府烟煤/遵义无烟煤煤焦气化实验,并借助扫描电子显微镜和孔结构及比表面积分析仪表征焦样孔结构及表观结构变化,考察了反应温度(650-800℃)、气化剂(水蒸气、二氧化碳)及碳酸钠负载量(钠离子负载量2.2%、4.4%、6.6%,质量分数)对神府烟煤/遵义无烟煤焦样气化反应活性的影响。结果表明,碳酸钠有利于促进神府/遵义煤热解过程孔隙结构的发展。在二氧化碳气氛下,适宜催化剂负载量使神府烟煤反应活性提高,过多负载催化剂堵塞煤焦内部孔隙结构,使得气化反应活性降低,遵义无烟煤反应活性随负载量增加而提高,两者反应活性均随温度升高而提高。在水蒸气气氛下,神府烟煤/遵义无烟煤在一定条件下反应活性随催化剂负载量增大、温度升高而提高。碳酸钠的添加能够在保证气化反应性的前提下降低气化反应温度和活化能。  相似文献   

7.
以含油污泥与配合煤为原料在850-1150℃热解制得焦样,采用N2吸附-脱附和X射线衍射(XRD)分析煤焦孔隙结构及碳微晶结构,并运用热重分析(TGA)考察热解温度和含油污泥添加量对煤焦气化反应活性的影响。结果表明,提高热解温度和添加含油污泥能促进煤焦形成更加丰富的孔隙结构,强化煤焦-CO2气化反应接触并抑制煤焦石墨化进程,从而提高煤焦气化反应活性;然而,热解温度过高或添加油泥量过多则会致使煤焦结构致密或孔隙堵塞,气化反应活性反而降低。  相似文献   

8.
采用高温热台显微镜观测了片状煤焦颗粒CO_2气化过程中的形态演变,并通过拉曼光谱分析了气化半焦的碳微晶结构,同时研究了气化温度(1000-1200℃)和煤焦初始当量直径(1.00-1.60 mm)对其CO_2气化过程中的形态及结构演变的影响规律。结果表明,与反应前期相比,反应后期的颗粒收缩(面积、体积、当量直径)更加剧烈。在所研究的气化温度范围内,随着气化温度的升高,煤焦颗粒的面积收缩率和体积收缩率逐渐减小。煤焦初始粒径显著影响颗粒收缩,1100℃气化温度下,颗粒的收缩趋势在初始粒径1.30 mm处出现转折。煤焦气化过程中碳消耗主导着表观密度的变化,在所研究的温度和粒径范围内,当碳转化率达到80%时,表观密度比线性减小到0.4以下。在相同气化温度下,随着碳转化率的增加,煤焦的石墨化程度先减小后增加,无定形碳含量先增加再减小。  相似文献   

9.
神府煤焦与水蒸气、CO2气化反应特性研究   总被引:3,自引:8,他引:3  
采用高温微量热天平和自制水蒸气发生装置进行神府煤焦与水蒸气和CO2气化实验,考察热解速率、不同气化剂(CO2和水蒸气)以及温度对气化反应的影响.用扫描电镜和吸附仪测定煤焦的初始结构.两种煤焦孔径为2 nm~170 nm的孔占总孔容的90%以上.神府快速煤焦(FP)与水蒸气气化活性比慢速煤焦(SP)高4.16倍,FP比SP挥发分脱除快,破坏其孔结构,减少缔合机会和二次反应.SP的BET比表面积为1.077 7 m2/g,FP的BET比表面积为1.893 9 m2/g.SP与水蒸气气化活性是CO2的9.94倍,FP与水蒸气的气化活性是CO2的7.15倍,水蒸气比CO2气化时进入的孔径范围广及水蒸气比CO2更容易解离.同种煤焦与水蒸气和CO2气化时的气化速率与转化率之间的趋势相近.用随机孔模型拟合并求取反应动力学参数,温度对SP与水蒸气、CO2反应速率,以及FP与水蒸气反应速率影响相似,而对FP与CO2反应速率影响明显比前三个反应要小.  相似文献   

10.
煤焦在燃烧过程中孔隙结构变化的模拟   总被引:4,自引:1,他引:4  
煤焦在燃烧过程中的物理特性,如比表面积和孔径分布会发生连续变化,直接测量煤焦在燃烧过程中的孔隙结构变化很困难,但可以通过合适的数学模型来观察,二维的圆柱孔模型已大量用来对煤焦气化与燃烧过程中表面积和孔隙结构的变化进行模拟,这个模型把孔隙分成两大部分--大孔与小孔,因为小孔构成比表面的绝大部分,所以在反应过程中比表面积的变化可以由单一小孔模型来拟合,本文采用了用Tseng和Edgar提出的孔模型对几  相似文献   

11.
采用热重分析仪考察了气化温度(850-1 150℃)和煤焦粒径(60、505、950、1 515、2 000μm)对常压下神木煤焦气化反应的影响。在此基础上,运用体积模型、缩核模型和随机孔模型研究了煤焦常压二氧化碳气化反应动力学,分析了内扩散对煤焦气化反应的影响。结果表明,随机孔模型能够准确预测反应速率随煤焦转化率的变化。基于本征动力学数据,通过对Thiele模数、内扩散效率因子的计算,并将其与实验效率因子相比较,发现计算效率因子能够评估内扩散对初始气化反应的影响,但不能准确评估整个气化过程中内扩散对气化反应的影响。  相似文献   

12.
通过高温热台原位研究气化阶段钾基催化剂对神府煤焦的催化气化作用。考察了气化温度(800-900℃)和催化剂负载量(4.4%、10%(质量分数))对煤焦反应性能的影响。通过热台显微镜对煤焦颗粒催化气化过程进行可视化研究并引入分形理论对煤焦颗粒表面结构进行分析,揭示分形维数所表征的气化反应性。实验结果表明,煤焦颗粒的分形维数与之碳转化率呈正相关性,即催化剂负载量一定,改变气化温度,分形维数愈大,煤焦颗粒的碳转化率越大;气化温度一定,改变催化剂负载量,分形维数愈大,煤焦颗粒的碳转化率越大;煤焦颗粒的初始气化反应速率与分形维数关系与碳转化率一致;煤焦颗粒的分形维数与煤焦球度、角度间相关性较大,存在指数关系;即分形维数随煤焦颗粒角度的增加而增大;煤焦颗粒分形维数指标可用于煤焦催化气化过程的研究。  相似文献   

13.
采用高温热台显微镜观测了片状煤焦颗粒CO2气化过程中的形态演变,并通过拉曼光谱分析了气化半焦的碳微晶结构,同时研究了气化温度(1000-1200℃)和煤焦初始当量直径(1.00-1.60 mm)对其CO2气化过程中的形态及结构演变的影响规律。结果表明,与反应前期相比,反应后期的颗粒收缩(面积、体积、当量直径)更加剧烈。在所研究的气化温度范围内,随着气化温度的升高,煤焦颗粒的面积收缩率和体积收缩率逐渐减小。煤焦初始粒径显著影响颗粒收缩,1100℃气化温度下,颗粒的收缩趋势在初始粒径1.30 mm处出现转折。煤焦气化过程中碳消耗主导着表观密度的变化,在所研究的温度和粒径范围内,当碳转化率达到80%时,表观密度比线性减小到0.4以下。在相同气化温度下,随着碳转化率的增加,煤焦的石墨化程度先减小后增加,无定形碳含量先增加再减小。  相似文献   

14.
氢气存在下的煤焦水蒸气气化: I 反应特性研究   总被引:2,自引:2,他引:0  
分别以水蒸气/惰性气混合气、水蒸气/氢气混合气作为气化剂,在常压和875℃~950℃下,采用热天平对1200℃快速热解神府煤焦的气化反应特性进行了研究,并考察了气化过程中煤焦结构的变化及其对气化反应的影响。实验发现,煤焦在水蒸气/氢气作为气化剂条件下的气化反应过程可分为两个阶段,首先是反应急剧进行的阶段,然后是反应速率趋于稳定的阶段,且反应速率接近于石墨的反应速率。该现象与煤的化学结构有关,第一阶段气化剂与活泼性物质 碳氢支链、含氧官能团的反应,第二阶段气化剂与芳香碳的反应;煤焦在水蒸气/氢气气氛下,气化过程中的碳难以转化完全。神府煤焦的SEM表明,煤焦表面有大量的裂缝、孔隙、褶皱、及碎块。碎块表面光滑,这些物质覆盖了内部裂缝与孔隙。煤焦和水蒸气/氢气气化残焦(碳转化率68%)由于气化反应,其碎块减少,表面的大孔暴露出来。比较两种气化剂条件下的气化反应过程发现,水蒸气/惰性气气化反应速率随碳转化率的增加而缓慢均匀地下降;水蒸气/氢气气化反应速率随碳转化率增加先迅速降低,而后较缓慢降低。  相似文献   

15.
以煤与甲烷共转化为背景,运用热重方法进行了由煤焦、甲烷和二氧化碳组成的共转化反应体系中碳的反应动力学研究。在1173K~1273K考察了温度对碳转化的影响。结果表明,该反应体系中碳的表观反应速率比煤焦的纯二氧化碳气化速率慢一倍左右,且表观上碳不能完全被气化。通过改变甲烷和二氧化碳的比例考察了气相组成变化对共转化反应中碳转化速率的影响,发现甲烷浓度的增加和二氧化碳浓度的减少都会降低碳的转化速率,且随着甲烷浓度的增加,表观上碳最终所能达到的转化率也会降低。通过数据分析发现,该反应适合采用均相反应模型进行描述,关联得到其表观活化能为312.4kJ/mol,甲烷的反应级数为-0.13,二氧化碳的反应级数为0.3。  相似文献   

16.
为探究高倍率循环流化床气化过程中生物质中碳微观结构及气化活性演变规律,在实验室固定床反应装置上对稻壳进行了高循环倍率气化过程模拟,并对稻壳热解焦及其不同次数循环气化后样品的孔隙结构、碳微观结构及气化活性进行了研究.结果表明,随着循环次数的增加,焦的比表面积呈现先增大后减小的趋势,但不同次数循环后焦的BET比表面积均明显...  相似文献   

17.
煤焦的孔隙结构及其与气化的关系   总被引:6,自引:4,他引:6  
本文采用气相色谱技术,以N_2和CO_2为吸附质,测定煤焦的比表面积及其孔径分布。研究了煤焦的孔隙结构在气化过程中的变化及其与气化的关系。结果表明,煤焦的孔隙结构在气化过程中的变化不但取决于原煤的性质,而且取决于气化介质;煤焦除灰前后,孔隙结构在气化过程中的变化也不同;煤焦在气化过程中的孔隙结构特征(如比表面积S)与气化反应速率(M)之间有一定的关系:M=a+bS(基碳转化率X=0.1—0.7)  相似文献   

18.
选取气流床气化炉所使用不同煤阶的八种煤焦,通过多级筛分制得单分散煤粉样本,利用热重分析仪考察了气化温度、煤焦粒径对不同煤阶煤焦CO_2气化反应的影响。对比了不同碳转化率阶段下的反应差异,并讨论了高碳转化率阶段的情况。研究表明,随着煤阶的升高,煤焦碳微晶结构更为有序,其气化活性也随之降低。煤焦粒径对气化反应的影响与煤阶有关。对于无烟煤,平均粒径300μm的无烟煤煤焦转化率达到95%所需时间可达40μm煤焦的7倍;对于褐煤与烟煤,由于其孔隙结构较为发达,粒径变化对煤焦气化活性的影响并不明显。综合煤阶、气化温度、煤焦粒径对气化反应活性的影响发现,相较低阶煤,提高气化温度、减小煤焦粒径能够更有效地提升高阶煤气化反应活性。  相似文献   

19.
以典型宁东煤-羊场湾煤为气化原料,采用热重分析仪和高温热台显微镜原位研究了1100、1200、1300℃下煤焦颗粒及其在灰层界面和熔渣界面的气化反应。结果表明,不同气化温度下灰层界面和熔渣界面的形态变化是影响煤焦颗粒气化反应性的主要因素。气化温度为1100℃,灰层在高温下收缩并包裹在煤焦颗粒表面,阻碍气化剂与煤焦颗粒的接触,使煤焦颗粒气化反应速率降低,而熔渣界面未发生明显变化,其界面处煤焦气化反应速率不变。气化温度为1300℃,灰层界面与熔渣界面均转变为液态,在表面张力作用下煤焦颗粒破碎,有效反应面积变大,传热速率增大,进而提高了煤焦的气化反应速率。  相似文献   

20.
在固定床反应器中研究了钾在热解和水蒸气气化过程中的变迁,并在TG-DSC上考察了钾系催化剂对煤焦水蒸气气化的催化效果以及随钾化合物形态变化的关系。结果表明,干混法和浸渍法添加碳酸钾对煤焦水蒸气气化的催化效果显著,煤焦的气化反应性随着钾添加量的增加而增大,当催化剂添加到一定量时催化效果陡增,同时神府煤钾的负荷饱和添加量为10%。在煤样热解和气化过程中,钾的化学形态会发生变化,发现并定量了还原态钾中间体的生成。在气化过程中碳酸钾的催化规律和还原态钾中间体的数量之间存在对应关系,当碳转化率为0.2~0.4时,气化速率和还原态钾中间体的数量达到最大值。在700~800℃,钾系催化剂的催化作用和还原态钾中间体的数量之间也存在对应关系,即碳酸钾催化效果较好,氯化钾的催化效果较差,硫酸钾的催化效果随温度的变化明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号