首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure of thin films deposited by pulsed laser ablation (PLD) is strongly dependent on experimental conditions, like laser wavelength and fluence, substrate temperature and pressure. Depending on these parameters we obtained various kinds of carbon materials varying from dense, mainly tetrahedral amorphous carbon (ta-C), to less compact vertically oriented graphene nano-particles. Thin carbon films were grown by PLD on n-Si 〈100〉 substrates, at temperatures ranging from RT to 800°C, from a rotating graphite target operating in vacuum. The laser ablation of the graphite target was performed by a UV pulsed ArF excimer laser (λ=193 nm) and a pulsed Nd:YAG laser, operating in the near IR (λ=1064 nm). The film structure and texturing, characterised by X-ray diffraction analysis, performed at grazing incidence (GI-XRD), and the film density, evaluated by X-ray reflectivity measurements, are strongly affected both by laser wavelength and fluence and by substrate temperature. Micro-Raman and GI-XRD analysis established the progressive formation of aromatic clusters and cluster condensation into vertically oriented nano-sized graphene structures as a direct function of increasing laser wavelength and deposition temperature. The film density, negatively affected by substrate temperature and laser wavelength and fluence, in turn, results in a porous bulk configuration and a high macroscopic surface roughness as shown by SEM characterisation. These structural property modifications induce a relevant variation also on the emission properties of carbon nano-structures, as evidenced by field emission measurements. This work is dedicated to our friend Giorgio who passed away 20th August.  相似文献   

2.
Permalloy (Py) films were deposited on Si(111) or Corning 0211 glass substrates. There were two deposition temperatures: T s=room temperature (RT) and T s=270°C. The film thickness (t f) ranges from 10 to 130 nm. The crystal structure properties of the films were studied by X-ray diffraction and transmission electron microscopy. Mechanical properties (including Young’s modulus E f and hardness H f) of each film were measured by the nanoindentation (NI) technique. E f of the Py/Si(111) films was checked again by the laser induced surface acoustic wave (LA-SAW) technique. It was found that the NI technique is best suited for the measurements of E f and H f, but only when the sample belongs to the (soft film)/(soft substrate) system, such as the Py/glass film. For the (soft film)/(hard substrate) system, such as the Py/Si(111) film, the NI technique often provides higher values of E f and H f than expected. The anomalous phenomenon, associated with the NI technique may be related to the anisotropic crystal structures in the Py films on different kinds of substrates. From this study, we conclude that [E f of Py/Si(111)]>[E f of Py/glass] and [H f of Py/Si(111)]>[H f of Py/glass]. The good mechanical properties of the Py/Si(111) film make it a better candidate for recording head applications.  相似文献   

3.
A strength function for the β+/EC decay of the deformed 160g Ho (25.6 min) nucleus has been obtained from experimental data. The fine structure of the strength function S β(E) is analyzed. It is found to have a pronounced resonant structure for Gamow-Teller transitions. In S β(E) with μτ = +1 the Gamow-Teller resonance has been observed to split into two components. This splitting is associated with anisotropy of isovector density oscillation in deformed nuclei. The β+/EC strength function for first-forbidden transitions is obtained in the Coulomb (ξ) approximation. It is shown that S β(E) for first-forbidden transitions does not have a pronounced resonant structure. The text was submitted by the authors in English.  相似文献   

4.
Ba2−x Sr x NaNb5O15 thin films were prepared on La0.05Sr0.95TiO3 substrates by pulsed laser deposition. The structural and ferroelectric properties of the thin films depended on substrate temperature (T sub) and Sr concentration. When T sub was fixed at 700 °C, the Ba2−x Sr x NaNb5O15 (x = 0, 0.6, 1.0, and 1.4) thin films exhibited a high c-axis orientation. The thin films consisted of well-developed grains and exhibited a smooth surface. The c-axis-oriented Ba0.6Sr1.4NaNb5O15 thin film with the lowest Curie temperature also exhibited a high c-axis orientation and a P-E hysteresis loop with a high ferroelectricity at T sub 650 °C. Thus, its remanent polarization (P r) and coercive field (E c) were 2P r 24.9 μC/cm2 and 2E c 107 kV/cm, respectively. These values indicate that Ba2−x Sr x NaNb5O15 has ferroelectricity in the thin film form.  相似文献   

5.
The relaxation processes (α, β, and γ) in UHMW PE fibres drawn to different draw ratios λ have been studied by dynamic-mechanical and nuclear magnetic resonance methods. The temperature dependences of tensile loss moduli E″ and spin-lattice relaxation times T 1 have been analyzed assuming distribution of correlation times τ according to the Davidson—Cole function. The activation energies E a and parameters ε characterizing widths of distribution, and asymptotic value τ 0 for correlation times have been determined from experimental data for low-temperature γ-process and for high-temperature α-process. A weak β-process has been found by dynamic-mechanical method and quantitative analysis was made only for fibres with λ = 9. The temperature dependences of second moment M 2 of the broad-line NMR spectra have been analyzed according to the Gutowsky—Pake formula, which includes only a single correlation time τ c without distribution. In this case the activation energies E a and values of τ 0 have been determined.  相似文献   

6.
The magnetotransport and magnetoresistive (MR) properties of manganese-based La0.67Ca0.33MnO3 perovskite with different grain sizes are reported. The electrical resistivity was measured as a function of temperature in magnetic fields of 0.5 and 1 T. The insulator–metal transition temperature, T IM, shifted to a higher temperature with the application of the magnetic field. In zero field, T IM is almost constant (∼271 K) for all samples except for the sample with the largest grain size, where T IM=265 K. The temperature dependence of resistivity was fitted with several equations in the metallic (ferromagnetic) region and the insulating (paramagnetic) region. The density of states at the Fermi level, N(E F), and the activation energy of electron hopping were estimated by fitting the resistivity versus temperature curves. The ρT 2 curves are nearly linear in the metallic regime, but the ρT 2.5 curves exhibit a deviation from linearity. The variable range hopping model and small polaron hopping model fit the data well in the high-temperature region, indicating the existence of the Jahn–Teller distortion that localizes the charge carriers. MR was found to increase with an increase in the magnetic field, an effect which is attributed to the intergrain spin tunneling effect.  相似文献   

7.
We propose a way of making graphene superconductive by putting on it small superconductive islands which cover a tiny fraction of graphene area. We show that the critical temperature, T c , can reach several Kelvins at the experimentally accessible range of parameters. At low temperatures, T T c , and zero magnetic field, the density of states is characterized by a small gap E g T c resulting from the collective proximity effect. Transverse magnetic field H g (T) ∝ E g is expected to destroy the spectral gap driving graphene layer to a kind of a superconductive glass state. Melting of the glass state into a metal occurs at a higher field H g2(T). The article is published in the original.  相似文献   

8.
Using low-pressure chemical vapour deposition (LPCVD), multi-walled carbon nanotubes (MWNTs) are grown on nanocrystalline Fe70Pt30 film. The Fe70Pt30 nanocrystalline film is deposited by vapour condensation technique. The size of the nanoparticles varies from 5–10 nm, as inferred from SEM micrographs of Fe70Pt30 film. SEM and TEM observations of as-grown CNTs film reveal that these are multi-walled and their diameter varies from 30–80 nm and length is of the order of several micrometers respectively. There is a structural change from ordinary geometry of CNTs to bamboo shaped as suggested by TEM image. Raman spectra shows sharp G and D bands with a higher intensity of G band showing the presence of graphitic nature of the nanotubes. An experimental study of the temperature dependence of electrical conductivity of MWNTs film is done over a wide temperature range from (293–4 K). The measured data gives a good fit to variable-range hopping (VRH) and the results are interpreted using Mott's (VRH) model. The conduction mechanism of the MWNTs film shows a crossover from the exp[ -(To/T)1/4] law in the temperature range (293–110 K) to exp[ -(Tm/T)1/3] in the low temperature range (110–4 K). This behaviour is attributed to temperature-induced transition from three-dimension (3D) to two-dimension (2D) VRH. Various Mott's parameters like characteristic temperature (Tm), density of states at Fermi level N(EF), localization length (ξ), hopping distance (R), hopping energy (W) have also been calculated using above-mentioned model.  相似文献   

9.
Bismuth telluride thin films have been grown by close space vapor transport (CSVT) technique as a function of substrate temperature (Tsub). Both N- and P-type samples can be obtained by this method which is a relatively simple procedure, which makes the method interesting for technological applications. The samples were deposited onto amorphous glass and polycrystalline CdTe film substrates in the substrate temperature range 300-425 °C, with a fixed gradient between source and substrate of 300 °C. The influence of the type of substrate and substrate temperature in the CSVT chamber on the physical properties of the films is presented and discussed.  相似文献   

10.
Polycrystalline vanadium pentoxide (V2O5) thin films have been deposited by spray pyrolysis technique on preheated glass substrate. The influence of thermal annealing on the crystallization of V2O5 has been investigated. X-ray diffraction analysis (XRD) revealed that the films deposited at Tsub=350 °C were orthorhombic structures with a preferential orientation along 〈0 0 1〉 direction. Moreover, the degree of crystallinity was improved by thermal annealing. Optical properties of these samples were studied by spectrophotometer in the wavelength range 300-2500 nm. Some of the important optical absorptions such as optical dispersion energies Eo and Ed, dielectric constant ε, ratio between number of charge carriers and effective mass N/m*, wavelength of single oscillator λ0, plasma frequency ωp, single resonant frequency ω0 and the average of oscillator strength So, have been evaluated. In the annealing process, the dielectric properties have weak dependencies of film thickness and annealing time. Furthermore, a value of carrier concentration was obtained of 3.02×1025 m−3 for the as-deposited film and slight changes with annealing time.  相似文献   

11.
Indium tin oxide (ITO) thin films prepared by the sol–gel method have been deposited by the dip-coating process on silica substrates. CO2 laser is used for annealing treatments. The electrical resistivity of sol–gel-derived ITO thin films decreased following crystallization after exposure to CO2 laser beam. The topological and electrical properties of the irradiated surfaces have been demonstrated to be strongly related to the coating solution and to the laser processing parameters. Optimal results have been obtained for 5 dip-coating layers film from 0.4 mol/l solution irradiated by 0.6 W/m2 laser power density. In this case, homogeneous and optically transparent traces were obtained with a measured sheet resistance of 1.46×102 Ω/□.  相似文献   

12.
Thin nano-structured carbon films have been deposited in vacuum by pulsed laser ablation, from a rotating polycrystalline graphite target, on Si 〈1 0 0〉 substrates, kept at temperatures ranging from RT to 800 °C. The laser ablation was performed by a Nd:YAG laser, operating in the near IR (λ = 1064 nm).X-ray diffraction analysis, performed at grazing incidence angle, both in-plane (ip-gid) and out-of-plane (op-gid), has shown the growth of oriented nano-sized graphene particles, characterised by high inter-planar stacking distance (d? ∼ 0.39 nm), compared to graphite. The film structure and texturing are strongly related both to laser wavelength and substrate temperature: the low energy associated to the IR laser radiation (1.17 eV) generates activated carbon species of large dimensions that, also at low T (∼400 °C), easy evolve toward more stable sp2 aromatic bonds, in the plume direction. Increasing temperature the nano-structure formation increases, causing a further aggregation of aromatic planes, voids formation, and a related density (by X-ray reflectivity) drop to very low values. SEM and STM show for these samples a strongly increased macroscopic roughness. The whole process, mainly at higher temperatures, is characterised by a fast kinetic mode, far from equilibrium and without any structural or spatial rearrangement.  相似文献   

13.
Lead-free (Bi0.98−x La0.02Na1−x )0.5Ba x TiO3 ceramics have been prepared by an ordinary sintering technique and their structure, ferroelectric and piezoelectric properties have been studied. The results of X-ray diffraction show that La2+ and Ba2+ diffuse into the Bi0.5Na0.5TiO3 lattices to form a new solid solution with a pure perovskite structure, and a morphotropic phase boundary (MPB) exists at 0.04<x<0.10. Compared with pure Bi0.5Na0.5TiO3 ceramics, the (Bi0.98−x La0.02Na1−x )0.5Ba x TiO3 ceramics possess much smaller coercive field E c and larger remanent polarization P r. Because of the low E c (3.38 kV/mm), large P r (46.2 μC/cm2) and the formation of the MPB of rhombohedral and tetragonal phases, the piezoelectric properties of the ceramics are significantly enhanced at x=0.06: d 33=181 pC/N and k p=36.3%. The depolarization temperature T d reaches a minimum value near the MPB. The ceramics exhibit relaxor characteristic, which is probably a result from the cation disordering in the 12-fold coordination sites. The temperature dependences of the ferroelectric and dielectric properties suggest that the ceramics may contain both polar and non-polar regions at the temperatures above T d.  相似文献   

14.

It is shown that during low-temperature (300–500 K) intercalation of sodium atoms into thin multilayer graphene and graphite films on rhenium the first graphene layer plays the role of a trap to which atoms coming on the surface diffuse through a graphite film. The intercalation phase of the interlayer space in the graphite bulk is actively filled at a sodium atoms concentration under the first graphene layer close to the maximum possible (2 ± 0.5) × 1014 cm–2. This phase capacity is proportional to the graphite film thickness that can be varied in this work from one graphene layer to ~50 atomic layers. The diffusion energy E d of Na atoms through the graphite film was estimated to be E d ≈ 1.4 eV.

  相似文献   

15.
We have studied the influence of oxygen on the superconducting properties of thin films of lead, indium and tin deposited on glass or sapphire substrates. In addition, the morphological microstructure was investigated by scanning electron microscopy. The film thickness was 1.0 μm, and the partial pressure of O2 during the film deposition was raised up to 1×10−4 Torr. In all three materials the development of a granular structure and a strong increase in the residual electric resistivity was observed due to the O2-treatment. Whereas in the Pb films no change of the critical temperature was found, the In films deposited on glass substrates showed a slight increase ofT c due to the oxygen. The strongest increase ofT c (up to 8%) was observed in the O2-treated Sn films. These results are discussed in terms of the McMillan theory. From our measurements of the critical current densityj c we conclude that edge pinning is dominant in the undoped films. All three materials showed a strong increase ofj c due to the O2-treatment which must be interpreted in terms of bulk pinning.  相似文献   

16.
The production of dense arrays of well aligned ZnO nano- and microrods with a controllable distribution of diameters is demonstrated. The rods were grown using a hydrothermal method, on pre-deposited ZnO thin films exhibiting a range of different grain sizes. These template ZnO thin films were deposited by pulsed laser ablation, at 193 nm, in a low background pressure of O2; average grain sizes ranged from 10 nm (room temperature deposition) to 50 nm when deposited at a substrate temperature (Tsub) of 500 °C. The morphology of the ZnO microrod arrays grown onto these ZnO thin films was found to depend on the Tsub used during film deposition. Increasing Tsub resulted in a lower density of larger nanorods, with a more pronounced [0001] alignment. The diameters of the rods produced are typically an order of magnitude greater than the grain size of the template ZnO film. Thus the rods cannot be a direct continuation of the grain structure of the template films. Rather, we suggest that the rod diameter is controlled by the density of sites at which the initial nucleation occurs, which is expected to be higher on the smaller grain size films deposited at lower temperatures. The factor controlling the final size of the rods is thus the available free space into which they can grow, which is smaller at the higher nucleation densities. The increased extent of [0001] texturing of the thin film templates deposited at higher Tsub is proposed as the reason for the improved [0001] alignment of rods grown on these templates. PACS 81.07.De; 81.10.Dn; 52.38.Mf  相似文献   

17.
Nanocrystalline ZnO thin films have been deposited on rhenium and tungsten pointed and flat substrates by pulsed laser deposition method. An emission current of 1 nA with an onset voltage of 120 V was observed repeatedly and maximum current density ∼1.3 A/cm2 and 9.3 mA/cm2 has been drawn from ZnO/Re and ZnO/W pointed emitters at an applied voltage of 12.8 and 14 kV, respectively. In case of planar emitters (ZnO deposited on flat substrates), the onset field required to draw 1 nA emission current is observed to be 0.87 and 1.2 V/μm for ZnO/Re and ZnO/W planar emitters, respectively. The Fowler–Nordheim plots of both the emitters show nonlinear behaviour, typical for a semiconducting field emitter. The field enhancement factor β is estimated to be ∼2.15×105 cm−1 and 2.16×105 cm−1 for pointed and 3.2×104 and 1.74×104 for planar ZnO/Re and ZnO/W emitters, respectively. The high value of β factor suggests that the emission is from the nanometric features of the emitter surface. The emission current–time plots exhibit good stability of emission current over a period of more than three hours. The post field emission surface morphology studies show no significant deterioration of the emitter surface indicating that the ZnO thin film has a very strong adherence to both the substrates and exhibits a remarkable structural stability against high-field-induced mechanical stresses and ion bombardment. The results reveal that PLD offers unprecedented advantages in fabricating the ZnO field emitters for practical applications in field-emission-based electron sources.  相似文献   

18.
We have measured Ca-intercalated graphite superconductor CaC6 (Tc = 11.2 K) by soft X-ray photoemission spectroscopy in order to understand the electronic structure. For the valence band, we observed several structures that correspond to those of calculated density of states with the partial density of states of Ca 3d at the Fermi level (EF). We also observed core level spectra that are a very large asymmetric Ca 2p and asymmetric C 1s for CaC6, suggesting the existence of conduction electrons derived from Ca 3d and a charge transfer from Ca to graphene layer. These results provide spectroscopic evidence for PDOS of Ca 3d at EF. From a comparison of electronic structure of CaC6 and other graphite intercalation compounds (GICs), we found the difference between CaC6 and other superconducting GICs, which provides deeper understanding of the superconductivity of CaC6.  相似文献   

19.
An analysis is made of some general laws governing a new physical effect, i.e., the spontaneous penetration of particles (atoms, C60 molecules) adsorbed on a two-dimensional graphite film on a metal (Ir, Re, Pt, Mo,...) to beneath the graphite film (intercalation). It is shown that atoms having low ionization potentials (Cs, K, Na) intercalate a two-dimensional graphite film on iridium at T=300–400K with an efficiency χ≈0.5, accumulating beneath the film to a concentration of up to a monolayer. Atoms having high ionization potentials (Si, Pt, Ni, C, Mo, etc.) intercalate a two-dimensional graphite film on iridium at T≈1000K with an efficiency, χ≈1, forming beneath the film a thick intercalate layer which is strongly bonded chemically to the metal substrate but is probably weakly bonded to the graphite monolayer by van der Waals forces. The presence of a graphite “lid” impeding the escape of atoms from the intercalated state up to record high temperatures T∼2000K leads to superefficient diffusion (with an efficiency close to one) of various atoms (Cs, K) into the bulk of the substrate (Re, Ir). Zh. Tekh. Fiz. 69, 72–75 (September 1999)  相似文献   

20.
(1−xy)Bi0.5Na0.5TiO3xBi0.5K0.5TiO3yBi0.5Li0.5TiO3 lead-free piezoelectric ceramics have been prepared by an ordinary sintering technique, and their structure, electrical properties, and temperature characteristics have been studied systematically. The ceramics can be well-sintered at 1050–1150 °C. The increase in K+ concentration decreases the grain-growth rate and promotes the formation of grains with a cubic shape, while the addition of Li+ decreases greatly the sintering temperature and assists in the densification of BNT-based ceramics. The results of XRD diffraction show that K+ and Li+ diffuse into the Bi0.5Na0.5TiO3 lattices to form a solid solution with a pure perovskite structure. As x increases from 0.05 to 0.50, the ceramics transform gradually from rhombohedral phase to tetragonal phase and consequently a morphotropic phase boundary (MPB) is formed at 0.15≤x≤0.25. The concentration y of Li+ has no obvious influence on the crystal structure of the ceramics. Compared with pure Bi0.5Na0.5TiO3, the partial substitution of K+ and Li+ for Na+ lowers greatly the coercive field E c and increases the remanent polarization P r of the ceramics. Because of the MPB, lower E c and large P r, the piezoelectricity of the ceramics is improved significantly. For the ceramics with the compositions near the MPB (x=0.15–0.25 and y=0.05–0.10), the piezoelectric properties become optimum: piezoelectric coefficient d 33=147–231 pC/N and planar electromechanical coupling factor k P=20.2–41.0%. In addition, the ceramics exhibit relaxor characteristic, which probably results from the cation disordering in the 12-fold coordination sites. The depolarization temperature T d shows a strong dependence on the concentration x of K+ and reaches the lowest values at the MPB. The temperature dependences of the ferroelectric and dielectric properties at high temperatures may imply that the ceramics may contain both the polar and non-polar regions at temperatures above T d.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号