首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Flow field-flow fractionation (flow FFF), a separation technique for particles and macromolecules, has been used to separate carbon nanotubes (CNT). The carbon nanotube ropes that were purified from a raw carbon nanotube mixture by acidic reflux followed by cross-flow filtration using a hollow fiber module were cut into shorter lengths by sonication under a concentrated acid mixture. The cut carbon nanotubes were separated by using a modified flow FFF channel system, frit inlet asymmetrical flow FFF (FI AFIFFF) channel, which was useful in the continuous flow operation during injection and separation. Carbon nanotubes, before and after the cutting process, were clearly distinguished by their retention profiles. The narrow volume fractions of CNT collected during flow FFF runs were confirmed by field emission scanning electron microscopy and Raman spectroscopy. Experimentally, it was found that retention of carbon nanotubes in flow FFF was dependent on the use of surfactant for CNT dispersion and for the carrier solution in flow FFF. In this work, the use of flow FFF for the size differentiation of carbon nanotubes in the process of preparation or purification was demonstrated.  相似文献   

2.
Chianéa T  Assidjo NE  Cardot PJ 《Talanta》2000,51(5):835-847
Field flow fractionation (FFF) methods were conceptualised in the late 1960s by J.C Giddings. These techniques are particularly suited for the retention and separation of micron and sub-micron sized particles. Systematic technological development as well as methodological procedures were established to achieve separations over the last 30 years. The elution mechanism of micron sized species is now known as 'steric/hyperlayer'. Cells are micron sized particles of life science interest, in particular those living in suspension. The separation of cells according to differences in their biophysical characteristics is therefore possible using the FFF principle. In the first part of this report, characteristics of classical cell separation methodologies are recounted as well as the specific features of FFF. In the second part, a review of cell separations or purifications obtained with sedimentation FFF techniques is given and FFF trends in cell separation is developed.  相似文献   

3.
4.
A peak breakthrough technique is described and evaluated for measuring the void volume of field-flow fractionation (FFF) channels, particularly those used for flow FFF. This technique uses a high-molecular-mass macromolecular or particulate probe that can be displaced rapidly by flow through the FFF channel with minimal transverse diffusion. The particles that emerge first are those carried through the entire length near the channel centerline at the apex of the parabolic flow profile. These particles generate a sharp breakthrough profile. The measured breakthrough time is two thirds of the void time, thus making it possible to calculate both the void time and the associated void volume. This method, although applicable to all FFF channels (and capable of extension to open tubes), is particularly useful for flow FFF because conventional low-molecular-mass void probes can diffuse into the permeable walls and thus distort void measurements. The theoretical basis of the breakthrough technique and an explanation for the sharpness of the breakthrough front are given. A method for compensating for deviations from perfect sharpness is developed in which the breakthrough time is identified with the time needed to reach 85-88% of the breakthrough peak maximum. Preliminary experimental results are shown using various protein probes in four different FFF channel systems.  相似文献   

5.
Effects of mobile phase composition can play an effective role in modulating the retention of particles in gravitational field-flow fractionation (GFFF), the simplest and cheapest among field-flow fractionation (FFF) techniques. In the framework of an optimized procedure for the GFFF characterization of particulate systems, an experimental approach to the effects of the mobile phase composition on the retention of silica particles retention is presented. The role of the ionic strength and the presence of surfactant are emphasized, with special regards to the shape of the particles. Moreover, the first experimental evidence of potential-barrier GFFF is reported.  相似文献   

6.
Steric/hyperlayer field-flow fractionation (FFF) is an established analytical technique for separating and characterizing particles in the 1-100 microns diameter range. The separation can be based on differences in size, density, shape and mechanical properties of the particles. In the course of an analysis of the water transporter system of Chinese hamster ovary (CHO) cells and one of their high permeability mutants, the first successful attempt was made to use the steric/hyperlayer FFF system for the purpose of separating particles based on a time-dependent property, namely, the differential swelling of the two cell types. The present study was undertaken to simulate numerically the separation and suggest selection of operating conditions to minimize repetitive experiments. The computer simulation was developed using Maple V, a symbolic computing environment. It is shown that the model is able to predict an optimal velocity of carrier buffer that maximizes resolution. Predicted velocity/resolution pairs are in good agreement with available experimental data. Empirical models for the lift forces encountered in such FFF experiments, and for the zone broadening observed in work with cell sized particles, form the basis for this model.  相似文献   

7.
Field-flow fractionation (FFF) is a powerful alternative to column-based polymer fractionation methods such as size-exclusion chromatography (SEC) or interaction chromatography (IC). The most common polymer fractionation method, SEC, has its limitations when polymers with very high molar masses or complex structures must be analysed. Another limitation of all column-based methods is that the samples must be filtered before analysis and shear degradation of large macromolecules may be caused by the stationary phase and/or the column frits. Finally, the separation of very polar polymers may be a challenge because such polymers interact very strongly with the stationary phase, causing irreversible adsorption or other negative effects. This article reviews the latest developments in field-flow fractionation of complex polymers. It is demonstrated that some of the limitations of column-based chromatography can be overcome by FFF. When appropriate, results from column-based fractionations are compared with those from FFF fractionations to highlight the specific merits and challenges of each method. In addition to the fractionations themselves, various detector setups are discussed to show that different polymer distributions require different experimental procedures. Examples are given of the analysis of molar mass distribution, chemical composition, and microstructure. Advanced detector combinations are discussed, most prominently the very recently developed coupling to 1H NMR. Finally, analysis of polymer nanocomposites by asymmetric flow field-flow fractionation (AF4)–FTIR is presented.
Figure
FFF fractionation and analysis of a complex polymer using a multidetector setup  相似文献   

8.
Field-flow fractionation (FFF) is an analytical technique particularly suitable for the separation, isolation, and characterization of macromolecules and micrometer- or submicrometer-sized particles. This chromatographic-like methodology can modulate the retention of micron-sized species according to an elution mode described to date as "steric hyperlayer". In such a model, differences in sample species size, density, or other physical parameters make particle selective elution possible depending on the configuration and the operating conditions of the FFF system. Elution characteristics of micron-sized particles of biological origin, such as cells, can be modified using media and carrier phases of different osmolarities. In these media, a cells average size, density, and shape are modified. Therefore, systematic studies of a single reference cell population, red blood cells (RBCs), are performed with 2 sedimentation FFF systems using either gravity (GrFFF) or a centrifugational field (SdFFF). However, in all cases, normal erythrocyte in isotonic suspension elutes as a single peak when fractionated in these systems. With carrier phases of different osmolarities, FFF elution characteristics of RBCs are modified. Retention modifications are qualitatively consistent with the "steric-hyperlayer" model. Such systematic studies confirm the key role of size, density, and shape in the elution mode of RBCs in sedimentation FFF for living, micronsized biological species. Using polymers as an analogy, the RBC population is described as highly "polydisperse". However, this definition must be reconsidered depending on the parameters under concern, leading to a matricial concept: multipolydispersity. It is observed that multipolydispersity modifications of a given RBC population are qualitatively correlated to the eluted sample band width.  相似文献   

9.
Field-flow fractionation (FFF) is a mature technique in bioanalysis, and the number of applications to proteins and protein complexes, viruses, derivatized nano- and micronsized beads, sub-cellular units, and whole cell separation is constantly increasing. This can be ascribed to the non-invasivity of FFF when directly applied to biosamples. FFF is carried out in an open-channel structure by a flow stream of a mobile phase of any composition, and it is solely based on the interaction of the analytes with a perpendicularly applied field. For these reasons, fractionation is developed without surface interaction of the analyte with packing or gel media and without using degrading mobile phases. The fractionation device can be also easily sterilized, and analytes can be maintained under a bio-friendly environment. This allows to maintain native conditions of the sample in solution.In this review, FFF principles are briefly described, and some pioneering developments and applications in the bioanalytical field are tabled before detailed report of most recent FFF applications obtained also with the hyphenation of FFF with highly specific, sensitive characterization methods. Special focus is finally given to the emerging use of FFF as a pre-analytical step for mass-based identification and characterization of proteins and protein complexes in proteomics.  相似文献   

10.
Submicron and micron particles present in liquid environmental, biological, and technological samples differ in their dimensions, shape, mass, chemical composition, and charge. Their properties cannot be reliably studied unless the particles are fractionated. Synthetic particles applied as components of analytical systems may also need preliminary fractionation and investigation. The review is focused on the methods for fractionation and characterization of nanoparticles and microparticles in liquid media, the most representative examples of their application, and the trends in developing novel approaches to the separation and investigation of particles. Among the separation techniques, the main attention is devoted to membrane filtration, field-flow fractionation, chromatographic, and capillary electrokinetic methods. Microfluidic systems employing the above-mentioned and other separation principles and providing a basis for the fabrication of lab-on-chip devices are also examined. Laser light scattering methods and other physical techniques for the characterization of particles are considered. Special attention is given to “hyphenated” techniques which enable the separation and characterization of particles to be performed in online modes.  相似文献   

11.
The coupling between flow field-flow fractionation (FFF), multi-angle laser light scattering and differential refractometer index provides a promising technique for fractionation of starch polysaccharides in aqueous conditions. Native starches with different amylose/amylopectin levels (0-70%) as well as a pure amylose sample were characterized. By applying a sudden drop in the cross-flow-rate, clear separation was achieved between amylose (which elutes first) and amylopectin. Flow FFF produced correct relationships between the molecular mass or the gyration radius versus elution volume for the fractionated amylopectin population. The results are also considered in terms of the macromolecular composition of starches.  相似文献   

12.
 A method for characterizing the particle size and size distribution of multi-sized polymer lattices was developed by combining quasielastic light scattering (QELS) with a centrifuge. Lattices were first fractionated by centrifugation and the different populations of particles were separated in successive steps. The size of these particles was measured by QELS, and the mass fraction of the particles was determined gravimetrically. The particle size and size distribution of several blends of monodisperse lattices and two industrial multi-sized lattices have been measured by this method. The results show that the particle sizes obtained using this method are in good agreement with the expected particle diameters, and that the relative amounts of the different groups of particles in the blends can be accurately determined. The efficiency of centrifuge-QELS was also confirmed by comparison with other techniques such as transmission electron microscopy (TEM), QELS, field-flow fractionation (FFF) and capillary hydrodynamic fractionation (CHDF). However, this method is not suited for the analysis of continuous, broad distributions or mixtures with a high number of different populations. It is better suited for distributions with a small number of families of particles, and then can be used for preparative propose on a laboratory scale. Received: 9 October 1996 Accepted: 7 July 1997  相似文献   

13.
This paper examines geometric scaling models for field flow fractionation systems to understand how channel dimensions affect resolution and retention. Specifically, the changing contribution of the instrumental plate height during miniaturization of field flow fractionation (FFF) systems is reported. The work is directed towards determining the optimal geometrical parameters for miniaturization of field flow fractionation systems. The experimental relationship between channel height in FFF systems and instrumental plate heights is reported. FFF scaling models are modified to: (i) better clarify the dependence of plate height and resolution on channel height in FFF and (ii) include a more complete geometrical scaling analysis and model comparison in the low retention regime. Electrical field flow fractionation has been shown to benefit from miniaturization, so this paper focuses on that subtype, but surprisingly, the results also indicate the possibility of improvement in performance with miniaturization of other field flow fractionation systems including general FFF subtypes in which the applied field does not vary with channel height. This paper also discusses the potential role of more powerful microscale field flow fractionation systems as a new class of sample preparation units for micro-total-analysis systems (mu-TAS).  相似文献   

14.
Molecular weight, distribution, as well as other molecular characteristics are important drivers in determining the potential behaviors and hence applications of polymeric materials. Out of different methods available for the determination of molecular weight and its distribution, field flow fractionation (FFF) provides absolute molecular weight values and accurate molecular weight distributions. Analytical ultracentrifugation (AUC), on the other hand, relies on the exact density of the polymer materials in solution to determine the accurate molecular weight and its distribution and in the absence of knowledge of exact density, AUC is less accurate than the FFF method. However, combination of the two methods can be achieved to gain insights into the other molecular characteristics of swollen polymer chains. One such example is the determination of the exact density of the swollen polymer chains by the incorporation of the molecular weight information from FFF into AUC analysis. Based on the comparison of the optimized polymer chain density with the bulk density, it was observed that the polyacrylic acid and polyacrylamide chains were swollen in the range of 27 to 29%. Moreover, the FFF and AUC can also complement each other in enhancing the range of characterization possible with the two methods when used separately.  相似文献   

15.
We describe the development and testing of a setup that allows for DEP field‐flow fractionation (DEP‐FFF) of irreversibly electroporated, reversibly electroporated, and nonelectroporated cells based on their different polarizabilities. We first optimized the channel and electrode dimensions, flow rate, and electric field parameters for efficient DEP‐FFF separation of moderately heat‐treated CHO cells (50°C for 15 min) from untreated ones, with the former used as a uniform and stable model of electroporated cells. We then used CHO cells exposed to electric field pulses with amplitudes from 1200 to 2800 V/cm, yielding six groups containing various fractions of nonporated, reversibly porated, and irreversibly porated cells, testing their fractionation in the chamber. DEP‐FFF at 65 kHz resulted in distinctive flow rates for nonporated and each of the porated cell groups. At lower frequencies, the efficiency of fractionation deteriorated, while at higher frequencies the separation of individual elution profiles was further improved, but at the cost of cell flow rate slowdown in all the cell groups, implying undesired transition from negative into positive DEP, where the cells are pulled toward the electrodes. Our results demonstrate that fractionation of irreversibly electroporated, reversibly electroporated, and nonelectroporated cells is feasible at a properly selected frequency.  相似文献   

16.
A simple theoretical model for the size selectivity, S(d), in the lift mode of retention in field-flow fractionation (FFF) is developed on the basis of the near-wall lift force expression. S(d) is made up of two contributions: the flow contribution, S(d,f), arising from the variation of the flow velocity at center of particle due to a change in particle position with particle size, and a slip contribution, S(d,s), arising from the concomitant change in the extent of retardation due to the presence of a nearby channel wall. The slip contribution is minor, but not negligible, and amounts to 10-20% of the overall size selectivity. It contributes to reduce S(d) in sedimentation FFF but to enhance it in flow FFF. S(d) would steadily increase with particle size if the flow profile was linear (Couette flow). Because of the curvature of the flow profile encountered in the classical Poiseuille flow, S(d) exhibits a maximum at some specific particle size. The model predicts a significant difference in S(d) between sedimentation FFF and flow FFF, arising from the different functional dependences of the field force with particle size between these two methods. The predictions are in good agreement with the various S(d) values reported in the literature in both sedimentation and flow FFF. On the basis of the model, guidelines are given for adjusting the operating parameters (carrier flow rate and field strength) to optimize the size selectivity. Finally, it is found that S(d) generally decreases with decreasing channel thickness.  相似文献   

17.
Field-flow fractionation (FFF) is one of the most versatile separation techniques in the field of analytical separation sciences, capable of separating macromolecules in the range 103–1015 g mol−1 and/or particles with 1 nm–100 μm in diameter. The most universal and most frequently used FFF technique, flow FFF, includes three types of techniques, namely symmetrical flow FFF, hollow fiber flow FFF, and asymmetrical flow FFF which is most established variant among them. This review provides a brief look at the theoretical background of analyte retention and separation efficiency in FFF, followed by a comprehensive overview of the current status of asymmetrical flow FFF with selected applications in the field of biopolymers and bioparticles.  相似文献   

18.
Electric field is one of the suitable physical fields applicable to particle separations. Although long rectangular channel is used for particle separation in usual electrical field flow fractionation (FFF), a short low-capacity channel can replace it if the field is precisely controlled. Several separation principles are proposed with this channel. The elution behavior of particles has revealed that the gravitational, diffusion, and hydrodynamic lift force (HLF) play important roles in the determination of the elution behavior of particles. The elution threshold voltage (V(th)) was defined and experimentally determined for various system configurations and particles. The electric force no longer overcomes the other forces, and particles are taken off the wall, when the applied voltage becomes lower than V(th). V(th) values have allowed us not only to estimate surface charge density of a particle but also to evaluate the hydrodynamic lift force against particle.  相似文献   

19.
This review summarizes developments and applications of flow and thermal field-flow fractionation (FFF) in the areas of macromolecules and supramolecular assemblies. In the past 10 years, the use of these FFF techniques has extended beyond determining diffusion coefficients, hydrodynamic diameters, and molecular weights of standards. Complex samples as diverse as polysaccharides, prion particles, and block copolymers have been characterized and processes such as aggregation, stability, and infectivity have been monitored. The open channel design used in FFF makes it a gentle separation technique for high- and ultrahigh-molecular weight macromolecules, aggregates, and self-assembled complexes. Coupling FFF with other techniques such as multiangle light scattering and MS provides additional invaluable information about conformation, branching, and identity.  相似文献   

20.
The behavior of nanometer or micrometer-sized particles, dispersed in liquid phase and exposed to temperature gradient, is a complex and not yet well understood phenomenon. Thermal field-flow fractionation (TFFF), using conventional-size channels, played an important role in the studies of this phenomenon. In addition to thermal diffusion (thermophoresis) and molecular diffusion or Brownian movement, several secondary effects such as particle–particle and/or particle–wall interactions, chemical equilibria with the components of the carrier liquid, buoyant and lift forces, etc., may contribute to the retention and complicate the understanding of the relations between the thermal diffusion and the characteristics of the retained particles. Microthermal FFF is a new high-performance technique allowing much easier manipulation and control of the operational parameters within an extended range of experimental conditions in comparison with conventional TFFF. Consequently, in combination with various other methods, it is well suited for a detailed investigation of the mentioned effects. In this work, some contradictory published results concerning the thermal diffusion of the colloidal particles, studied by TFFF but also by other methods, are analyzed and compared with our experimental findings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号