首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We performed molecular dynamics simulations of multilayer assemblies of flexible polyelectrolytes and nanoparticles. The film was constructed by sequential adsorption of oppositely charged polymers and nanoparticles in layer-by-layer fashion from dilute solutions. We have studied multilayer films assembled from oppositely charged polyelectrolytes, oppositely charged nanoparticles, and mixed films containing both nanoparticles and polyelectrolytes. For all studied systems, the multilayer assembly proceeds through surface overcharging after completion of each deposition step. There is almost linear growth in the surface coverage and film thickness. The multilayer films assembled from nanoparticles show better layer stratification but at the same time have higher film roughness than those assembled from flexible polyelectrolytes.  相似文献   

2.
We have performed molecular dynamics simulations of polyelectrolyte adsorption at oppositely charged surfaces from dilute polyelectrolyte solutions. In our simulations, polyelectrolytes were modeled by chains of charged Lennard-Jones particles with explicit counterions. We have studied the effects of the surface charge density, surface charge distribution, solvent quality for the polymer backbone, strength of the short-range interactions between polymers and substrates on the polymer surface coverage, and the thickness of the adsorbed layer. The polymer surface coverage monotonically increases with increasing surface charge density for almost all studied systems except for the system of hydrophilic polyelectrolytes adsorbing at hydrophilic surfaces. In this case the polymer surface coverage saturates at high surface charge densities. This is due to additional monomer-monomer repulsion between adsorbed polymer chains, which becomes important in dense polymeric layers. These interactions also preclude surface overcharging by hydrophilic polyelectrolytes at high surface charge densities. The thickness of the adsorbed layer shows monotonic dependence on the surface charge density for the systems of hydrophobic polyelectrolytes for both hydrophobic and hydrophilic surfaces. Thickness is a decreasing function of the surface charge density in the case of hydrophilic surfaces while it increases with the surface charge density for hydrophobic substrates. Qualitatively different behavior is observed for the thickness of the adsorbed layer of hydrophilic polyelectrolytes at hydrophilic surfaces. In this case, thickness first decreases with increasing surface charge density, then it begins to increase.  相似文献   

3.
Cell adhesion processes take place through mechanotransduction mechanisms where stretching of proteins results in biological responses. In this work, we present the first cyto-mechanoresponsive surface that mimics such behavior by becoming cell-adhesive through exhibition of arginine-glycine-aspartic acid (RGD) adhesion peptides under stretching. This mechanoresponsive surface is based on polyelectrolyte multilayer films built on a silicone sheet and where RGD-grafted polyelectrolytes are embedded under antifouling phosphorylcholine-grafted polyelectrolytes. The stretching of this film induces an increase in fibroblast cell viability and adhesion.  相似文献   

4.
Molecular dynamics simulations of peptide-surface interactions   总被引:5,自引:0,他引:5  
Proteins, which are bioactive molecules, adsorb on implants placed in the body through complex and poorly understood mechanisms and directly influence biocompatibility. Molecular dynamics modeling using empirical force fields provides one of the most direct methods of theoretically analyzing the behavior of complex molecular systems and is well-suited for the simulation of protein adsorption behavior. To accurately simulate protein adsorption behavior, a force field must correctly represent the thermodynamic driving forces that govern peptide residue-surface interactions. However, since existing force fields were developed without specific consideration of protein-surface interactions, they may not accurately represent this type of molecular behavior. To address this concern, we developed a host-guest peptide adsorption model in the form of a G(4)-X-G(4) peptide (G is glycine, X is a variable residue) to enable determination of the contributions to adsorption free energy of different X residues when adsorbed to functionalized Au-alkanethiol self-assembled monolayers (SAMs). We have previously reported experimental results using surface plasmon resonance (SPR) spectroscopy to measure the free energy of peptide adsorption for this peptide model with X = G and K (lysine) on OH and COOH functionalized SAMs. The objectives of the present research were the development and assessment of methods to calculate adsorption free energy using molecular dynamics simulations with the GROMACS force field for these same peptide adsorption systems, with an oligoethylene oxide (OEG) functionalized SAM surface also being considered. By comparing simulation results to the experimental results, the accuracy of the selected force field to represent the behavior of these molecular systems can be evaluated. From our simulations, the G(4)-G-G(4) and G(4)-K-G(4) peptides showed minimal to no adsorption to the OH SAM surfaces and the G(4)-K-G(4) showed strong adsorption to the COOH SAM surface, which is in agreement with our SPR experiments. Contrary to our experimental results, however, the simulations predicted a relatively strong adsorption of G(4)-G-G(4) peptide to the COOH SAM surface. In addition, both peptides were unexpectedly predicted to adsorb to the OEG surface. These findings demonstrate the need for GROMACS force field parameters to be rebalanced for the simulation of peptide adsorption behavior on SAM surfaces. The developed methods provide a direct means of assessing, modifying, and validating force field performance for the simulation of peptide and protein adsorption to surfaces, without which little confidence can be placed in the simulation results that are generated with these types of systems.  相似文献   

5.
Molecular dynamics simulations of polyelectrolyte multilayering on a charged spherical particle revealed that the sequential adsorption of oppositely charged flexible polyelectrolytes proceeds with surface charge reversal and highlighted electrostatic interactions as the major driving force of layer deposition. Far from being completely immobilized, multilayers feature a constant surge of chain intermixing during the deposition process, consistent with experimental observations of extensive interlayer mixing in these films. The formation of multilayers as well as the extent of layer intermixing depends on the degree of polymerization of the polyelectrolyte chains and the fraction of charge on its backbone. The presence of ionic pairs between oppositely charged macromolecules forming layers seems to play an important role in stabilizing the multilayer film.  相似文献   

6.
Photopatterned nanoporosity in polyelectrolyte multilayer films   总被引:1,自引:0,他引:1  
We report on spatial control of nanoporosity in polyelectrolyte multilayer (PEM) films using photopatterning and its effects on film optical and adsorption properties. Multilayers assembled from poly(acrylic acid-ran-vinylbenzyl acrylate) (PAArVBA), a photo-cross-linking polymer, and poly(allylamine hydrochloric acid) (PAH) were patterned using ultraviolet light followed by immersion in low pH and then neutral pH solutions to induce nanoporosity in unexposed regions. Model charged small molecules rhodamine B, fluorescein, and propidium iodide and the model protein albumin exhibit increased adsorption to nanoporous regions of patterned PEM films as shown by fluorescence microscopy and radiolabeling experiments. Films assembled with alternating stacks of PAH/poly(sodium-4-styrene sulfonate) (SPS), which do not become nanoporous, and stacks of PAH/PAArVBA were patterned to create nanoporous capillary channels. Interdigitated channels demonstrated simultaneous, separate wicking of dimethyl sulfoxide-solvated fluorescein and rhodamine B. In addition, these heterostack structures exhibited patternable Bragg reflectivity of greater than 25% due to refractive index differences between the nanoporous and nonporous stacks. Finally, the PEM assembly process coupled with photo-cross-linking was used to create films with two separate stacked reflective patterns with a doubling in reflectivity where patterns overlapped. The combined adsorptive and reflective properties of these films hold promise for applications in diagnostic arrays and therapeutics delivery.  相似文献   

7.
The Layer-by-layer deposition of positively and negatively charged macromolecular species is an ideal method for constructing thin films incorporating biological molecules. We investigate the adsorption of fibronectin onto polyelectrolyte multilayer (PEM) films using optical waveguide lightmode spectroscopy (OWLS) and atomic force microscopy (AFM). PEM films are formed by adsorption onto Si(Ti)O2 from alternately introduced flowing solutions of anionic poly(sodium 4-styrenesulfonate) (PSS) and cationic poly(allylamine hydrochloride) (PAH). Using OWLS, we find the initial rate and overall extent offibronectin adsorption to be greatest on PEM films terminated with a PAH layer. The polarizability density of the adsorbed protein layer, as measured by its refractive index, is virtually identical on both PAH- and PSS-terminated films; the higher adsorbed density on the PAH-terminated film is due to an adsorbed layer of roughly twice the thickness. The binding of monoclonal antibodies specific to the protein's cell binding site is considerably enhanced to fibronectin adsorbed to the PSS layer, indicating a more accessible adsorbed layer. With increased salt concentration, we find thicker PEM films but considerably thinner adsorbed fibronectin layers, owing to increased electrostatic screening. Using AFM, we find adsorbed fibronectin layers to contain clusters; these are more numerous and symmetric on the PSS-terminated film. By considering the electrostatic binding of a segmental model fibronectin molecule, we propose a picture of fibronectin adsorbed primarily in an end-on-oriented monolayer on a PAH-terminated film and as clusters plus side-on-oriented isolated molecules onto a PSS-terminated film.  相似文献   

8.
The paper focuses on the problem of electrostatic interactions in molecular dynamics simulations of thermal properties of heterocyclic polymers. The study focuses on three thermoplastic polyimides synthesized on the basis of 1,3‐bis‐(3′,4‐dicarboxyphenoxy)benzene (dianhydride R) and three diamines: 4,4′‐bis‐(4″‐aminophenoxy) diphenylsulfone (diamine BAPS), 4,4′‐bis‐(4″‐aminophenoxy) biphenyl (diamine BAPB), and 4,4′‐bis‐(4''‐aminophenoxy) diphenyloxide (diamine BAPO). In the molecular dynamics simulations these polyimides were described by the Gromos53a5 force field. To parameterize the electrostatic interactions four methods of calculating the partial atomic charges were chosen: B3LYP/6–31G*(Mulliken), AM1(Mulliken), HF/6–31G*(Mulliken), and HF/6–31G*(ChelpG). As our parameterization is targeted to reproduce thermal properties of the thermoplastic polyimides, the choice of proper partial charges was finalized on a basis of the closest match between computational and experimental data for the thermal expansion coefficients of the polyimides below glass transition temperatures. Our finding clearly show that the best agreement with experimental data is achieved with the Mulliken partial atomic charges calculated by the Hartree‐Fock method with 6–31G* basis set. Furthermore, in addition to the thermal expansion coefficients this set of partial atomic charges predicts an experimentally observed relationship between glass transition temperatures of the three polyimides under study: . A mechanism behind the change in thermal properties upon the change in the chemical structure in considered polyimides may be related to an additional spatial ordering of sulfone groups due to dipole‐dipole interactions. Overall, the modified force‐field is proved to be suitable for accurate prediction of thermal properties of thermoplastic polyimides and can serve as a basis for building up atomistic theoretical models for describing other heterocyclic polymers in bulk. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 912–923  相似文献   

9.
Using molecular dynamics simulations in combination with scaling analysis, we have studied the effects of the solvent quality and the strength of the electrostatic interactions on the conformations of spherical polyelectrolyte brushes in salt-free solutions. The spherical polyelectrolyte brush could be in one of four conformations: (1) a star-like conformation, (2) a "star of bundles" conformation in which the polyelectrolyte chains self-assemble into pinned cylindrical micelles, (3) a micelle-like conformation with a dense core and charged corona, or (4) a conformation in which there is a thin polymeric layer uniformly covering the particle surface. These different brush conformations appear as a result of the fine interplay between electrostatic and monomer-monomer interactions. The brush thickness depends nonmonotonically on the value of the Bjerrum length. This dependence of the brush thickness is due to counterion condensation inside the brush volume. We have also established that bundle formation in poor solvent conditions for the polymer backbone can also occur in a planar polyelectrolyte brush. In this case, the grafted polyelectrolyte chains form hemispherical aggregates at low polymer grafting densities, cylindrical aggregates at an intermediate range of the grafting densities, and vertically oriented ribbon-like aggregates at high grafting densities.  相似文献   

10.
Interpolyelectrolyte complex (IPEC) formation between poly(styrene sulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) has been studied over a range of ionic strengths by isothermal titration calorimetry (ITC), turbidity titration, and electrostatic layer-by-layer assembly (ELBL). The results indicate that IPEC formation of PSS/PAH in aqueous solution is predominantly entropy-driven. The thermodynamic parameters suggest the formation of different types of complexes and aggregates due to salt-induced conformational changes in the polyelectrolyte conformation. Differences in polyelectrolyte behavior in the different salt-concentration regimes are described in terms of changes in the Debye screening length of the polyelectrolytes. The relationship of the results to the effect of salt concentration on the assembly of polyelectrolyte multilayer films (PEMs) is discussed.  相似文献   

11.
Within molecular dynamics simulations of protein–solvent systems the exact evaluation of long-range Coulomb interactions is computationally demanding and becomes prohibitive for large systems. Conventional truncation methods circumvent that computational problem, but are hampered by serious artifacts concerning structure and dynamics of the simulated systems. To avoid these artifacts we have developed an efficient and yet sufficiently accurate approximation scheme which combines the structure-adapted multipole method (SAMM) [C. Niedermeier and P. Tavan, J. Chem. Phys., 101 , 734 (1994)] with a multiple-time-step method. The computational effort for MD simulations required within our fast multiple-time-step structure-adapted multipole method (FAMUSAMM) scales linearly with the number of particles. For a system with 36,000 atoms we achieve a computational speed-up by a factor of 60 as compared with the exact evaluation of the Coulomb forces. Extended test simulations show that the applied approximations do not seriously affect structural or dynamical properties of the simulated systems. © 1997 John Wiley & Sons, Inc. J Comput Chem 18 : 1729–1749, 1997  相似文献   

12.
Polyelectrolyte multilayer thin films were prepared via the alternate deposition of poly(allylamine hydrochloride) (PAH) and a blend of poly(acrylic acid) (PAA) and poly(styrenesulfonate) (PSS). When the pH of the blend solution was 3.5, the presence of PAA in this solution significantly increased the total film thickness. With only 10 wt % PAA in the blend adsorption solution, a large increase in film thickness was observed (92 nm cf. 18 nm). It was also demonstrated that the total amount of PSS adsorbed was enhanced by the presence of PAA in the blend solution, showing that the blend solution composition influenced that of the multilayer films. Thin films prepared with nanoblended layers also showed improved pH stability, because they exhibited reduced film rearrangement upon exposure to acidic conditions (pH = 2.5).  相似文献   

13.
<正>Nanomechanical properties of multilayer films constructed of polyaniline(PANI) and azobeneze-containing polyelectrolytes(PNACN and PPAPE) were studied by using nanoindentation method.The multilayer films were prepared by the electrostatic layer-by-layer self-assembly through alternately dipping in the polymer solutions.The multilayer films deposited onto the glass slides after proper dry were used for the nanomechanical property testing.The nanomechanical measurement indicated that the PANI/PNACN and PANI/PPAPE multilayers possessed the mean elastic modulus of 5.42 GPa and 4.35 GPa,and hardness of 0.26 GPa and 0.18 GPa,respectively.The nanoscratch properties of the PANI/PNACN and PANI/PPAPE multilayer films were also measured.The critical loads of PANI/PNACN and PANI/PPAPE films were 103.52 mN and 100.59 mN.The degree of electrostatic cross-linking in the multilayers could be altered by exposing the films to aqueous solutions with different pH values.As a result,the modulus and hardness of the multilayer films were changed through the solvent treatment.Both modulus and hardness of the PANI/PNACN films obviously increased after dipping the multilayer films in solutions with pH in a range from 9 to 11.  相似文献   

14.
We report a systematic study by Langevin dynamics simulation on the energetics of complexation between two oppositely charged polyelectrolytes of same charge density in dilute solutions of a good solvent with counterions and salt ions explicitly included. The enthalpy of polyelectrolyte complexation is quantified by comparisons of the Coulomb energy before and after complexation. The entropy of polyelectrolyte complexation is determined directly from simulations and compared with that from a mean-field lattice model explicitly accounting for counterion adsorption. At weak Coulomb interaction strengths, e.g., in solvents of high dielectric constant or with weakly charged polyelectrolytes, complexation is driven by a negative enthalpy due to electrostatic attraction between two oppositely charged chains, with counterion release entropy playing only a subsidiary role. In the strong interaction regime, complexation is driven by a large counterion release entropy and opposed by a positive enthalpy change. The addition of salt reduces the enthalpy of polyelectrolyte complexation by screening electrostatic interaction at all Coulomb interaction strengths. The counterion release entropy also decreases in the presence of salt, but the reduction only becomes significant at higher Coulomb interaction strengths. More significantly, in the range of Coulomb interaction strengths appropriate for highly charged polymers in aqueous solutions, complexation enthalpy depends weakly on salt concentration and counterion release entropy exhibits a large variation as a function of salt concentration. Our study quantitatively establishes that polyelectrolyte complexation in highly charged Coulomb systems is of entropic origin.  相似文献   

15.
We employed negatively charged fluorescein (FL), positively charged rhodamine 6G (R6G), and neutral Nile Red (NR) as molecular probes to investigate the influence of Coulombic interaction on their deposition into and rotational mobility inside polyelectrolyte multilayer (PEM) films. The entrapment efficiency of the dyes reveals that while Coulombic repulsion has little effect on dye deposition, Coulombic attraction can dramatically enhance the loading efficiency of dyes into a PEM film. By monitoring the emission polarization of single dye molecules in polyethylenimine (PEI) films, the percentages of mobile R6G, NR, and FL were determined to be 87 +/- 4%, 76 +/- 5%, and 68 +/- 3%, respectively. These mobility distributions suggest that cationic R6G enjoys the highest degree of rotational freedom, whereas anionic FL shows the least mobility because of Coulombic attraction toward cationic PEI. Regardless of charges, this high percentage of mobile molecules is in stark contrast to the 5-40% probe mobility reported from spun-cast polymer films, indicating that our PEI films contain more free volume and display richer polymer dynamics. These observations demonstrate the potential of using isolated fluorescent probes to interrogate the internal structure of a PEM film at a microscopic level.  相似文献   

16.
Layer-by-layer assembly of polyelectrolyte multilayer (PEM) films represents a bottom-up approach for re-engineering the molecular landscape of cell surfaces with spatially continuous and molecularly uniform ultrathin films. However, fabricating PEMs on viable cells has proven challenging owing to the high cytotoxicity of polycations. Here, we report the rational engineering of a new class of PEMs with modular biological functionality and tunable physicochemical properties which have been engineered to abrogate cytotoxicity. Specifically, we have discovered a subset of cationic copolymers that undergoes a conformational change, which mitigates membrane disruption and facilitates the deposition of PEMs on cell surfaces that are tailorable in composition, reactivity, thickness, and mechanical properties. Furthermore, we demonstrate the first successful in vivo application of PEM-engineered cells, which maintained viability and function upon transplantation and were used as carriers for in vivo delivery of PEMs containing biomolecular payloads. This new class of polymeric film and the design strategies developed herein establish an enabling technology for cell transplantation and other therapies based on engineered cells.  相似文献   

17.
Polyelectrolyte multilayer (PEM) films have been recently applied to surface modification of biomaterials. Cellular interactions with PEM films consisted of weak polyelectrolytes are greatly affected by the conditions of polyelectrolyte deposition, such as pH of polyelectrolyte solution. Previous studies indicated that the adhesion of several types of mammalian cells to PAH/PAA multilayer films was hindered by low pH and high layer numbers. The objective of this study is to evaluate whether the hemocompatibility of polysulfone can be modulated by deposition of poly(allylamine hydrochloride) (PAH)/poly(acrylic acid) (PAA) multilayer films. PAH/PAA multilayer films with different layer numbers were assembled onto polysulfone at either pH 2.0 or pH 6.5. The number of platelet adhesion and the morphology of adherent platelets were determined to evaluate hemocompatibility of modified substrates. Compared to non-treat polysulfone, the PEM films developed at pH 2.0 decreased platelet adhesion, while those built at pH 6.5 enhanced platelet deposition. Platelet adhesion was found positively correlated to polyclonal antibodies binding to surface-bound fibrinogen. The extent of platelet spreading was increased with layer numbers of PEM films, suggesting that the adherent platelets on thick PEM films were prone to activation. In conclusion, PAH/PAA films with few layers developed at pH 2.0 possessed better hemocompatibility compared to other substrates.  相似文献   

18.
We report results on the pressure effects on hydrophobic interactions obtained from molecular dynamics simulations of aqueous solutions of methanes in water. A wide range of pressures that is relevant to pressure denaturation of proteins is investigated. The characteristic features of water-mediated interactions between hydrophobic solutes are found to be pressure-dependent. In particular, with increasing pressure we find that (1) the solvent-separated configurations in the solute-solute potential of mean force (PMF) are stabilized with respect to the contact configurations; (2) the desolvation barrier increases monotonically with respect to both contact and solvent-separated configurations; (3) the locations of the minima and the barrier move toward shorter separations; and (4) pressure effects are considerably amplified for larger hydrophobic solutes. Together, these observations lend strong support to the picture of the pressure denaturation process proposed previously by Hummer et al. (Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 1552): with increasing pressure, the transfer of water into protein interior becomes key to the pressure denaturation process, leading to the dissociation of close hydrophobic contacts and subsequent swelling of the hydrophobic protein interior through insertions of water molecules. The pressure dependence of the PMF between larger hydrophobic solutes shows that pressure effects on the interaction between hydrophobic amino acids may be considerably amplified compared to those on the methane-methane PMF.  相似文献   

19.
The influence of common cationic surfactants on the physical properties of differently composed polyelectrolyte films prepared by the layer-by-layer (LbL) technology was investigated. Free-standing polyelectrolyte films as microcapsules showed a fast, strong response to the addition of less than 1 mM cationic surfactant cetyltrimethylammonium bromide (CeTAB). As a function of the polyelectrolyte composition, the behavior of the capsules varied from negligible changes to complete disintegration via strong swelling. The response of microcapsules consisting of (poly(allylamine hydrochloride)(PAH)/poly(styrene sulfonate)(PSS))(4) was associated with a 5-fold volume increase, a fast switch of permeability, and in the case of fluorescently labeled films a 4-fold increase in fluorescence intensity. The kinetics and strengths of the interaction process were investigated by confocal laser scanning microscopy (CLSM) and fluorescence spectroscopy. Also, the relative stabilities of the polycation/polyanion and surfactant/polyanion complexes were determined. A mechanism was suggested to explain the interactions between the cationic surfactants and polyelectrolyte capsules. The strong response can be exploited in potential applications such as the triggered release of drugs or other encapsulated materials, the fluorescence-based detection of cationic detergents, and a switchable stopper in microchannels. However, the high sensitivity of LbL films to traces of cationic surfactants can also limit their applicability to the encapsulation of drugs or other materials because pharmaceutical or technical formulations often contain cationic surfactants as preservatives such as benzalkonium salts (BAC). It was demonstrated that undesired capsule opening can be effectively prevented by cross-linking the polyelectrolyte multilayers.  相似文献   

20.
Revealing the way of how modification of the chemical structure of a polymer affects its macroscopic physical properties offers an opportunity to develop novel polymer materials with pre‐defined characteristics. To address this problem two thermoplastic polyimides, ULTEM? and EXTEM?, were simulated with small difference in chemical structures of monomer units, namely, the phenyl ring in ULTEM? was replaced by the diphenylsulphone group in EXTEM?. It is shown that such a small modification results in a drastic difference of the thermal properties: the glass transition temperature of EXTEM? is higher than that of ULTEM?. Our molecular‐dynamics simulations clearly demonstrated that it is the electrostatic interactions that are responsible for the observed difference in thermal properties of ULTEM? and EXTEM?: large partial charges of the sulphone group in the EXTEM? lead to strong dipole–dipole intra‐ and intermolecular interactions and correspondingly to an elevated glass transition temperature. © 2014 Wiley Periodicals, Inc. J. Polym. Sci. Part B: Polym. Phys. 2014 , 52, 640–646  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号