首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis and properties of nicked dumbbell and dumbbell DNA conjugates having A-tract base pair domains connected by rod-like stilbenedicarboxamide linkers are reported. The nicked dumbbells have one to eight dA-dT base pairs and are missing a sugar-phosphate bond either between the linker and a thymine nucleoside residue or between two thymine residues. Chemical ligation of all of the nicked dumbbells with cyanogen bromide affords the dumbbell conjugates in good yield, providing the smallest mini-dumbbells prepared to date. The dumbbells have exceptionally high thermal stability, whereas the nicked dumbbells are only marginally more stable than the hairpin structures on either side of the nick. The structures of the nicked dumbbells and dumbbells have been investigated using a combination of circular dichroism spectroscopy and molecular modeling. The base pair domains are found to adopt normal B'-DNA geometry and thus provide a helical ruler for studies of the distance and angular dependence of electronic interactions between the chromophore linkers.  相似文献   

2.
A perylenediimide chromophore (P) was incorporated into DNA hairpins as a base-pair surrogate to prevent the self-aggregation of P that is typical when it is used as the hairpin linker. The photoinduced charge-transfer and spin dynamics of these hairpins were studied using femtosecond transient absorption spectroscopy and time-resolved EPR spectroscopy (TREPR). P is a photooxidant that is sufficiently powerful to quantitatively inject holes into adjacent adenine (A) and guanine (G) nucleobases. The charge-transfer dynamics observed following hole injection from P into the A-tract of the DNA hairpins is consistent with formation of a polaron involving an estimated 3-4 A bases. Trapping of the (A 3-4) (+*) polaron by a G base at the opposite end of the A-tract from P is competitive with charge recombination of the polaron and P (-*) only at short P-G distances. In a hairpin having 3 A-T base pairs between P and G ( 4G), the radical ion pair that results from trapping of the hole by G is spin-correlated and displays TREPR spectra at 295 and 85 K that are consistent with its formation from (1*)P by the radical-pair intersystem crossing mechanism. Charge recombination is spin-selective and produces (3*)P, which at 85 K exhibits a spin-polarized TREPR spectrum that is diagnostic of its origin from the spin-correlated radical ion pair. Interestingly, in a hairpin having no G bases ( 0G), TREPR spectra at 85 K revealed a spin-correlated radical pair with a dipolar interaction identical to that of 4G, implying that the A-base in the fourth A-T base pair away from the P chromophore serves as a hole trap. Our data suggest that hole injection and transport in these hairpins is completely dominated by polaron generation and movement to a trap site rather than by superexchange. On the other hand, the barrier for charge injection from G (+*) back onto the A-T base pairs is strongly activated, so charge recombination from G (or even A trap sites at 85 K) most likely proceeds by a superexchange mechanism.  相似文献   

3.
Synthetic conjugates possessing bis(2-hydroxyethyl)stilbene-4,4'-diether linkers (Sd2) form the most stable DNA hairpins reported to date. Factors that affect stability are length and flexibility of the linkers and pi-stacking of the stilbene moiety on the adjacent base pair. The crystal structure of the hairpin d(GT(4)G)-Sd2-d(CA(4)C) was determined at 1.5 A resolution. The conformations of the two molecules in the asymmetric unit differ both in the linker and the stem portions. One of them shows a planar stilbene that is stacked on the adjacent G:C base pair. The other displays considerable rotation between the phenyl rings and an unprecedented edge-to-face orientation of stilbene and base pair. The observation of considerable variations in the conformation of the Sd moiety in the crystal structure allows us to exclude restriction of motion as the reason for the absence of Sd photoisomerization in the hairpins. Conformational differences in the stem portion of the two hairpin molecules go along with different Mg(2+) binding modes. Most remarkable among them is the sequence-specific coordination of a metal ion in the narrow A-tract minor groove. The crystal structure provides unequivocal evidence that a fully hydrated Mg(2+) ion can penetrate the narrow A-tract minor groove, causing the groove to further contract. Overall, the structural data provide a better understanding of the origins of hairpin stability and their photochemical behavior in solution.  相似文献   

4.
The solution structure of a synthetic DNA mini-hairpin possessing a stilbenediether linker and three G:C base pairs has been obtained using (1)H NMR spectral data and constrained torsion angle molecular dynamics. Notable features of this structure include a compact hairpin loop having a short stilbene-guanine plane-to-plane distance and approximate B-DNA geometry for the three base pairs. Comparison of the electronic spectra of mini-hairpins having one-to-four G:C base pairs and stilbenediether or hexamethyleneglycol linkers reveals the presence of features in the UV and CD spectra of the stilbene-linked hairpins that are not observed for the ethyleneglycol-linked hairpins. Investigation of the electronic structure of a stilbene-linked hairpin having a single G:C base pair by means of time-dependent density functional theory shows that the highest occupied molecular orbital, but not the lowest unoccupied molecular orbital, is delocalized over the stilbene and adjacent guanine. The calculated UV and CD spectra are highly dependent upon hairpin conformation, but reproduce the major features of the experimental spectra. These results illustrate the utility of an integrated experimental and theoretical approach to understanding the complex electronic spectra of pi-stacked chromophores.  相似文献   

5.
An anthraquinone (AQ) based DNA linker and hairpin-forming DNAs linked by the AQ linker with variable A-T base pairs were synthesized for the investigation of electron transfer through double helical DNA (DNA-ET) in self-assembled monolayers (SAMs). The spectroscopic analysis of absorption spectra indicated that the AQ of the hairpin DNA stacked with adjacent A-T base pair. Electrochemical redox response due to the AQ was observed from the hairpin DNA immobilized on gold electrode, thus the hairpin DNA is suitable for the investigation of DNA-ET in SAMs.  相似文献   

6.
The structure and properties of 18 hairpin-forming bis(oligonucleotide) conjugates possessing stilbene diether linkers are reported. Conjugates possessing bis(2-hydroxyethyl)stilbene 4,4'-diether linkers form the most stable DNA hairpins reported to date. Hairpins with as few as two T:A base pairs or four noncanonical G:G base pairs are stable at room temperature. Increasing the length of the hydroxyalkyl groups results in a decrease in hairpin thermal stability. On the basis of the investigation of their circular dichroism spectra, all of the hairpins investigated adopt B-DNA structures, except for a hairpin with a short poly(G:C) stem which forms a Z-DNA structure. Both the strong fluorescence of the stilbene diether linkers and their trans-cis photoisomerization are totally quenched in hairpins possessing neighboring T:A and G:C base pairs. Quenching is attributed to an electron-transfer mechanism in which the singlet stilbene serves as an electron donor and T or C serves as an electron acceptor. In contrast, in denatured hairpins and hairpins possessing neighboring G:G base pairs the stilbene diether linkers undergo efficient photoisomerization.  相似文献   

7.
The synthesis and properties of a perylenediamide diol linker and several DNA hairpins possessing this linker are described. The diol linker absorbs and fluoresces strongly in the visible. Hairpins having poly(dA)-poly(dT) stems have fluorescence quantum yields and decay times similar to those of the linker, indicating that hole injection does not occur from the singlet excited linker into the base pair domain. Fluorescence quenching by dG or dZ bases is observed when these bases are located near the linker. The strong distance dependence of fluorescence quenching is consistent with a superexchange mechanism for electron transfer. Failure to observe formation of the linker anion radical by means of femtosecond time resolved absorption spectroscopy is attributed to fast charge recombination. The properties and behavior of the perylene linker and its hairpins are compared to those of other arenedicarboxamide linkers.  相似文献   

8.
The structure and properties of oligonucleotide conjugates possessing stilbenedicarboxamide chromophores at both ends of a poly(dA):poly(dT) base-pair domain of variable length have been investigated using a combination of spectroscopic and computational methods. These conjugates form capped hairpin structures in which one stilbene serves as a hairpin linker and the other as a hydrophobic end-cap. The capping stilbene stabilizes the hairpin structures by ca. 2 kcal/mol, making possible the formation of a stable folded structure containing a single A:T base pair. Exciton coupling between the stilbene chromophores has little effect on the absorption bands of capped hairpins. However, exciton-coupled circular dichroism (EC-CD) can be observed for capped hairpins possessing as many as 11 base pairs. Both the sign and intensity of the EC-CD spectrum are sensitive to the number of base pairs separating the stilbene chromophores, as a consequence of the distance and angular dependence of exciton coupling. Calculated spectra obtained using a static vector model based on canonical B-DNA are in good agreement with the experimental spectra. Molecular dynamics simulations show that conformational fluctuations of the capped hairpins result in large deviations of the averaged spectra in both the positive and negative directions. These results demonstrate for the first time the ability of B-DNA to serve as a helical ruler for the study of electronic interactions between aligned chromophores. Furthermore, they provide important tests for atomistic theoretical models of DNA.  相似文献   

9.
This paper reports dissociation constants and "effective molarities" (M(eff)) for the intramolecular binding of a ligand covalently attached to the surface of a protein by oligo(ethylene glycol) (EG(n)) linkers of different lengths (n = 0, 2, 5, 10, and 20) and compares these experimental values with theoretical estimates from polymer theory. As expected, the value of M(eff) is lowest when the linker is too short (n = 0) to allow the ligand to bind noncovalently at the active site of the protein without strain, is highest when the linker is the optimal length (n = 2) to allow such binding to occur, and decreases monotonically as the length increases past this optimal value (but only by a factor of approximately 8 from n = 2 to n = 20). These experimental results are not compatible with a model in which the single bonds of the linker are completely restricted when the ligand has bound noncovalently to the active site of the protein, but they are quantitatively compatible with a model that treats the linker as a random-coil polymer. Calorimetry revealed that enthalpic interactions between the linker and the protein are not important in determining the thermodynamics of the system. Taken together, these results suggest that the manifestation of the linker in the thermodynamics of binding is exclusively entropic. The values of M(eff) are, theoretically, intrinsic properties of the EG(n) linkers and can be used to predict the avidities of multivalent ligands with these linkers for multivalent proteins. The weak dependence of M(eff) on linker length suggests that multivalent ligands containing flexible linkers that are longer than the spacing between the binding sites of a multivalent protein will be effective in binding, and that the use of flexible linkers with lengths somewhat greater than the optimal distance between binding sites is a justifiable strategy for the design of multivalent ligands.  相似文献   

10.
Self‐complementary oligodeoxynucleotides containing 3,6‐disubstituted phenanthrenes adopt highly stable, hairpin‐like structures. The thermodynamic stability of the hairpin mimics depends on the overall length of the phenanthrene building block. Hairpin loops composed of a phenanthrene‐3,6‐dicarboxamide and ethylene linkers were found to be optimal. The hairpin mimics are more stable than the analogous hairpins containing either a dT4 or dA4 tetraloop. Model studies indicate that the thermodynamic stability of the hairpin mimics is primarily due to aromatic stacking of the phenanthrene‐3,6‐dicarboxamide onto the adjoining base pair of the DNA duplex.  相似文献   

11.
The excited-state behavior of synthetic DNA dumbbells possessing stilbenedicarboxamide (Sa) linkers separated by short A-tracts or alternating A-T base-pair sequences has been investigated by means of fluorescence and transient absorption spectroscopy. Electronic excitation of the Sa chromophores results in conversion of a locally excited state to a charge-separated state in which one Sa is reduced and the other is oxidized. This symmetry-breaking process occurs exclusively via a multistep mechanism-hole injection followed by hole transport and hole trapping-even at short distances. Rate constants for charge separation are strongly distance-dependent at short distances but become less so at longer distances. Disruption of the A-tract by inversion of a single A-T base pair results in a pronounced decrease in both the rate constant and efficiency of charge separation. Hole trapping by Sa is highly reversible, resulting in rapid charge recombination that occurs via the reverse of the charge separation process: hole detrapping, hole transport, and charge return to regenerate the locally excited Sa singlet state. These results differ in several significant respects from those previously reported for guanine or stilbenediether as hole traps. Neither charge separation nor charge recombination occur via a single-step superexchange mechanism, and hole trapping is slower and detrapping faster when Sa serves as the electron donor. Both the occurrence of symmetry breaking and reversible hole trapping by a shallow trap in a DNA-based system are without precedent.  相似文献   

12.
A series of α,ω‐heterodifunctional monomers with styrene (St) and maleimide moieties bridged by a varied length of oligo‐ethylene glycol (OEG) linkers were synthesized. Cyclopolymerizations of these monomers through reversible addition–fragmentation chain transfer‐mediated alternating radical copolymerization between intramolecular St and maleimide moieties were investigated. For the monomers with three or more ethylene glycol (EG) units, their cyclopolymerizations can be realized properly in low monomer feeding concentrations, affording well‐defined cyclopolymers with crown ether encircled in their main chains. Importantly, the cyclopolymerizations of monomers with six or seven EG units in the presence of KPF6 could be enhanced by the supramolecular effects between the OEG linkers and the potassium metal ion. Thus, the monomer feeding concentration could be largely improved, which may benefit preparation of the cyclopolymers with high degrees of copolymerization. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 330–338  相似文献   

13.
The effect of 280 nm irradiation on a family of synthetic DNA hairpins possessing an alkane linker connecting a six-base pair stem having a single T-T step located at different positions within the hairpin has been investigated. A single adduct assigned to the product of 2+2 dimerization is obtained except in the case of a T-T step located adjacent to the linker, in which case both 2+2 and 6-4 adducts are obtained. The efficiency of dimerization is similar for three hairpins having a T-T step located within the duplex interior. Lower efficiency is observed for a T-T step located at the open end of the hairpin and in T overhangs, whereas higher efficiency is observed for the T-T step adjacent to the linker and in a single T bulge. The context-dependence of dimerization efficiency is discussed.  相似文献   

14.
The mechanism and dynamics of photoinduced electron transfer in two families of DNA hairpins possessing Michler's ketone linkers have been investigated by means of steady state and time‐resolved transient absorption and emission spectroscopies. The excited state behavior of the diol linker employed in hairpin synthesis is similar to that of Michler's ketone in methanol solution. Hairpins possessing only a Michler's ketone linker undergo fast singlet state charge separation and charge recombination with an adjacent purine base, attributed to well‐stacked ground state conformations, and intersystem crossing to the triplet state, attributed to poorly stacked ground state conformations. The failure of the triplet to undergo electron transfer reactions on the 7 ns time scale of our measurements is attributed to the low triplet energy and reduction potential of the twisted triplet state. Hairpins possessing both a Michler's ketone linker and a perylenediimide base surrogate separated by four base pairs undergo photoinduced hole transport from the diimide to Michler's ketone upon excitation of the diimide. The efficiency of hole transport is dependent upon the sequence of the intervening purine bases.  相似文献   

15.
A series of DNA hairpins (AqGn) possessing a tethered anthraquinone (Aq) end-capping group were synthesized in which the distance between the Aq and a guanine-cytosine (G-C) base pair was systematically varied by changing the number (n - 1) of adenine-thymine (A-T) base pairs between them. The photophysics and photochemistry of these hairpins were investigated using nanosecond transient absorption and time-resolved electron paramagnetic resonance (TREPR) spectroscopy. Upon photoexcitation, (1*)Aq undergoes rapid intersystem crossing to yield (3*)Aq, which is capable of oxidizing purine nucleobases resulting in the formation of (3)(Aq(-?)Gn(+?)). All (3)(Aq(-?)Gn(+?)) radical ion pairs exhibit asymmetric TREPR spectra with an electron spin polarization phase pattern of absorption and enhanced emission (A/E) due to their different triplet spin sublevel populations, which are derived from the corresponding non-Boltzmann spin sublevel populations of the (3*)Aq precursor. The TREPR spectra of the (3)(Aq(-?)Gn(+?)) radical ion pairs depend strongly on their spin-spin dipolar interaction and weakly on their spin-spin exchange coupling. The anisotropy of (3)(Aq(-?)Gn(+?)) makes it possible to determine that the π systems of Aq(-?) and G(+?) within the radical ion pair are parallel to one another. Charge recombination of the long-lived (3)(Aq(-?)Gn(+?)) radical ion pair displays an unusual bimodal distance dependence that results from a change in the rate-determining step for charge recombination from radical pair intersystem crossing for n < 4 to coherent superexchange for n > 4.  相似文献   

16.
This paper reports on the structural characteristics of microcontact printed oligo(ethylene glycol)-terminated alkanethiol layers, HS(CH2)15CONH-(CH2CH2O)6-H (hereafter EG6), on gold. Microwetting, contact angle goniometry, imaging null ellipsometry, and infrared reflection-absorption spectroscopy (IRAS) are used to characterize the printed EG6 layers, and the quality of these layers in terms of layer thickness and the crystallinity of the alkyl and ethylene glycol portions is compared with data obtained from analogous layers prepared by solution self-assembly. The outcome of the printing process is critically dependent on the experimental parameters used to prepare the patterns. It is found that high quality layers, consisting of densely packed all-trans alkyl chains terminated with relatively helical hexa(ethylene glycol) tails, are formed by inking the poly(dimethylsiloxane) (PDMS) stamp with a 1 mM EG6 solution and contacting it with gold for 15 min. The homogeneity of printed layers is not as good as the homogeneity of those prepared from solution under similar conditions, most likely because of simultaneous transfer of low molecular weight residues from the PDMS stamp. These residues, however, can be easily removed upon ultrasonication in ethanol without affecting the quality of the printed layer. Further on, the microscopic square-shaped bare gold patterns formed after microcontact printing (muCP) are subsequently filled with 16-hexadecanoic acid (hereafter THA) or HS(CH2)15CONH-(CH2CH2O)6-COOH (hereafter EG6COOH) to provide a microarray platform for further covalent attachment of biomolecules. Well-defined structures in terms of wettability contrast, sharpness, and height differences between the printed and back-filled areas are confirmed by imaging null ellipsometry and microscopic wetting.  相似文献   

17.
Monolayers from the newly synthesized compound methoxy-tri(ethylene glycol)-undecenyldimethylchlorosilane (CH3O(CH2CH2O)3(CH2)11Si(CH3)2Cl, MeO(EG)3C11DMS) and dodecyldimethylchlorosilane (DDMS), both pure and mixed, were prepared by self-assembly from organic solution in the presence of an organic base. The films obtained were characterized by advancing and receding contact angle measurements and ellipsometry to confirm the formation of self-assembled monolayers (SAMs). The resulting data on the covalently attached dimethylsilanes were compared to known oligo(ethylene glycol) (OEG)-terminated SAM systems based on terminal alkenes, thiolates or trihydrolyzable silanes. The composition of the mixed SAMs was found to depend directly and linearly on the composition of the silanization solution. Enhanced protein repellent properties were found for the SAMs using a variety of proteins, including the Ras Binding Domain (RBD), a protein with high relevance for cancer diagnostics. Roughly a RBD protein monolayer amount was adsorbed to silicon oxide surfaces silanized with DDMS or non-silanized silicon wafers, and in contrast, no RBD was adsorbed to surfaces silanized with MeO(EG)3C11DMS or to mixed monolayers consisting of DDMS and MeO(EG)3C11DMS if the content of OEG-silane overcame a critical content of X(EG) approximately 0.9.  相似文献   

18.
Vibrational sum-frequency generation (VSFG) was used to investigate the conformational changes in self-assembled monolayers (SAMs) of (1-mercaptoundec-11-yl) hexa(ethylene glycol) monomethylether (EG6-OMe) on gold when exposed to liquid water. VSFG spectra of the EG6-OMe SAMs were recorded before, during, and after exposure of the films to water and after a subsequent evacuation step. While in contact with water the entire ethylene glycol chains are found in a random, solvated state, after removal from the fluid water molecules remain absorbed only at the terminal groups of the film giving rise to distinct conformational changes. After evacuation, the structure of the EG6-OMe SAM reverts to its original state, indicating that water has been removed from the monolayer. Our findings support recent ab initio calculations and Monte Carlo simulations on the interaction of ethylene glycol-terminated monolayers with water.  相似文献   

19.
The conformational fluctuations of dye-quencher labeled DNA hairpin molecules in aqueous solution were investigated using dual probe beam fluorescence fluctuation spectroscopy. The measurements revealed the flow and diffusion times of the DNA molecules through two spatially offset optical probe regions, the absolute and relative concentrations of each conformational substate of the DNA, and the kinetics of the DNA hairpin folding and unfolding reactions in the 1 micros to 10 ms time range. A DNA hairpin containing a 21-nucleotide polythymine loop and a 4-base pair stem exhibited double exponential relaxation kinetics, with time constants of 84 and 393 micros. This confirms that folding and melting of the DNA hairpin structure is not a two state process but proceeds by way of metastable intermediate states. The fast time constant corresponds to formation and unfolding of an intermediate, and the slow time constant is due to formation and disruption of the fully base-paired stem. This is consistent with a previous study of a similar DNA hairpin with a 5-base pair stem, in which the fast reaction was attributed to the fluctuations of an intermediate DNA conformation [J. Am. Chem. Soc. 2006, 128, 1240-1249]. In that case, reactions involving the native conformation could not be observed directly due to the limited observation time range of the fluorescence correlation spectroscopy experiment. The intermediate states of the DNA hairpins are suggested to be due to a collapsed ensemble of folded hairpins containing various partially folded or misfolded conformations.  相似文献   

20.
A strategy for the synthesis of a series of closely related oligo(ethylene glycol)-terminated alkanethiol amides (principally HS(CH(2))(m)CONH(CH(2)CH(2)O)(n)H; m = 2, 5, 11, 15, n = 1, 2, 4, 6, 8, 10, 12) and analogous esters has been developed. These compounds were made to study the structure and stability of self-assembled monolayers (SAMs) on gold in the prospect of designing new biosensing interfaces. For this purpose, monodisperse heterofunctional oligo(ethylene glycols) with up to 12 units were prepared. Selective monoacylation of the symmetrical tetra- and hexa(ethylene glycol) diols as their mesylates with the use of silver(I) oxide was performed. The synthetic approach was based on carbodiimide couplings of various oligo(ethylene glycol) derivatives to omega-(acetylthio) carboxylic acids via a terminal amino or hydroxyl function. SAM structures on gold were studied with respect to thickness, wettability (water contact angles approximately 30 degrees ), and conformation. A good fit was obtained for the relation between monolayer thickness (d) and the number of units in the oligo(ethylene glycol) chain (n): d = 2.8n + 21.8 (A). Interestingly, the corresponding infrared spectroscopy analysis showed a dramatic change in conformation of the oligomeric chains from all-trans (n = 4) to helical (n > or = 6) conformation. A crystalline helical structure was observed in the SAMs for n > 6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号