首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The properties and applications of CNT have been studied extensively since Iijima discovered them in 1991[1,2]. They have exceptional mechanical properties and unique electrical property, highly chemical stability and large specific surface area. Thus far, they have widely potential applications in many fields. They can be used as reinforcing materials in composites[3], field emissions[4], hydrogen storage[5], nanoelectronic components[6], catalyst supports[7], adsorption material and so on.…  相似文献   

2.
This paper reports the use of natural amino acids, the tripeptide β-strand mimic Hao, and the β-turn mimic δ-linked ornithine to generate water-soluble 54-, 78-, and 102-membered-ring macrolactams. These giant macrocycles were efficiently prepared by synthesis of the corresponding protected linear peptides, followed by solution-phase cyclization and deprotection. The protected linear peptide precursors were synthesized on 2-chlorotrityl chloride resin by conventional Fmoc-based solid-phase peptide synthesis. Macrocyclization was typically performed using HCTU and N,N-diisopropylethylamine in DMF at ca. 0.5 mM concentration. The macrocycles were isolated in 13-45% overall yield after HPLC purification and lyophilization. 1D, 2D TOCSY, and 2D ROESY (1)H NMR studies of the 54- and 78-membered-ring macrolactams establish that these compounds fold to form β-sheet structures in aqueous solutions.  相似文献   

3.
We describe a method for detecting DNA methylation. It is based on direct oxidation of DNA bases at a glassy carbon electrode (GCE) modified with film of a multiwalled carbon nanotube-β-cyclodextrin composite. This nano-structured film causes a strong enhancement on the oxidation current of DNA bases due to its large effective surface area and extraordinary electronic properties. Well-defined peaks were obtained as a result of electro-oxidation of guanine (at 0.67 V), adenine (at 0.92 V), thymine (at 1.11 V), cytosine (at 1.26 V), and 5-methylcytosine (at 1.13 V; all data vs. saturated calomel electrode (SCE)). The potential difference between 5-methylcytosine and cytosine (130 mV) is large enough to enable reliable simultaneous determination and analysis. The interference by thymine can be eliminated by following the principle of complementary pairing between purine and pyrimidine bases in DNA. The modified electrode was successfully applied to the evaluation of 5-methylcytosine in a fish sperm DNA, the methylation level of cytosine was found to be 7.47 %, and the analysis process took less than 1 h.  相似文献   

4.
We functionalized aligned carbon nanotubes (ACNTs) electrode with a new kind of β-cyclodextrin (β-CD) derivative through diazotization reaction. The resulting β-CD/ACNTs electrode was used to detect DNA hybridization in homogeneous solution based on host–guest recognition technology. In the sensing protocol, one special DNA probe was designed with a stem-loop structure and both ends modified, which we called dually labeled DNA probe (DLP). One end of the DLP was labeled with dabcyl as guest molecule for β-CD/ACNTs electrode capture, and the other end was labeled with a CdS nanoparticle as an electrochemical tag to indicate the occurrence of DNA hybridization. In the absence of the target DNA sequence, the DLP maintains its hairpin structure in solution phase and would not be captured and detected by the β-CD/ACNTs electrode. In the presence of the complementary target sequence, the conformational structure of the DLP was altered and a double-stranded DNA (dsDNA) molecule was formed by the hybridization of DLP and complementary DNA sequence. Consequently, the dsDNA was captured by the β-CD/ACNTs electrode owing to guest–host recognition between β-CD and dabcyl. The electrochemical signal from the CdS nanoparticle–dsDNA/β-CD/ACNTs was then measured. Under optimized detection conditions, the proposed method showed high sensitivity and selectivity with a detection limit of 5.0 × 10−13 M for complementary DNA sequence.  相似文献   

5.
6.
An amperometric penicillin biosensor with enhanced sensitivity was successfully developed by co-immobilization of multi-walled carbon nanotubes (MWCNTs), hematein, and β-lactamase on glassy carbon electrode using a layer-by-layer assembly technique. Under catalysis of the immobilized enzyme, penicillin was hydrolyzed, decreasing the local pH. The pH change was monitored amperometrically with hematein as a pH-sensitive redox probe. MWCNTs were used as an electron transfer enhancer as well as an efficient immobilization matrix for the sensitivity enhancement. The effects of immobilization procedure, working potential, enzyme quantity, buffer concentration, and sample matrix were investigated. The biosensor offered a minimum detection limit of 50 nM (19 μg L−1) for penicillin V, lower than those of the conventional pH change-based biosensors by more than two orders of magnitude. The electrode-to-electrode variation of the response sensitivity was 7.0% RSD.  相似文献   

7.
Biomolecules with a broad range of structure and heteroatom-containing groups offer a great opportunity for rational design of promising electrocatalysts via versatile chemistry.In this study,uniform folic acid-Co nanotubes(FA-Co NTs) were hydrothermally prepared as sacrificial templates for highly porous Co and N co-doped carbon nanotubes(Co-N/CNTs) with well-controlled size and morphology.The formation mechanism of FA-Co NTs was investigated and FA-Co-hydrazine coordination interaction together with the H-bond interaction between FA molecules was characterized to be the driving force for growth of one-dimensional nanotubes.Such distinct metal-ligand interaction afforded the resultant CNTs rich Co-N_x sites,hierarchically porous structure and Co nanoparticle-embedded conductive network,thus an overall good electrocatalytic activity for oxygen reduction.Electrochemical tests showed that Co-N/CNTs-900 promoted an efficient 4 e ORR process with an onset potential of 0.908 V vs.RHE,a limiting current density of 5.66 mA cm-2 at 0.6 V and a H_2 O_2 yield lower than 5%,comparable to that of 20%Pt/C catalyst.Moreover,the catalyst revealed very high stability upon continuous operation and remarkable tolerance to methanol.  相似文献   

8.
The relationships between amino acid sequence, nano-assemblies, and cytotoxicity to neuron cytotoxicity were investigated using β-sheet-forming peptides from Araneus ventricosus spider silk, and amyloid forming peptides Aβ(12-28) (β1), Aβ(28-42) (β2), and full-length Aβ(1-42). Although silk derived peptides formed nano-assemblies, nanofilaments, and nanofibrils with β-sheet contents raging from 24 to 40%, they showed no significant cytotoxicity to neurons. In contrast, nano-assemblies and nanofibrils formed from Aβ peptides with high β-sheet content demonstrated cytotoxicity to the neurons. These differences in cell response between the silk β-sheets and Aβ peptides indicate that the general propensity to form beta sheets and form nanostructures is not sufficient to predict cytotoxicity, while surface charges of the assemblies are significant factors that impact cytotoxicity.  相似文献   

9.
The effects of nucleating duality, imposed by a mixed nucleating agent (NA) system containing multi-walled carbon nanotubes (MWCNTs) and a rare earth (WBG), on the crystallization behaviors of isotactic polypropylene (iPP) including the peak temperature of crystallization (T cp), polymorphic composition, and crystalline morphology, were probed in detail by calorimetry, X-ray diffraction, and polarized light microscopy. In such mixed nucleating agent system, MWCNTs is active filler to induce α-nucleation for iPP, while WBG serves as β-nucleating agent. When the WBG content was low (0.05%), the crystals of WBG were as a form of individual isotropic dendrite, and the enhancement of T cp was achieved by the incorporation of MWCNTs. As the WBG content was high as 0.1%, a percolated NA network consisted of needlelike crystals of WBG yielded before nucleating the prevalent crystallization of iPP. In this case, the addition of MWCNTs has no obvious effect on T cp. However, by varying the mass proportion of MWCNTs/WBG, the polymorphic composition was adjusted significantly, indicating a nucleation competition between MWCNTs and WBG. Although the competitive growth existed between α-crystals nucleated by MWCNTs and β-crystals nucleated by WBG, the formation of primary β-crystallite was always prior to the α-nucleated crystallization, as confirmed by crystalline morphology. These findings are useful for developing a new pathway to prepare iPP-based composite with good mechanical property via the addition of mixed nucleating system containing active inorganic filler and β-nucleating agent.  相似文献   

10.
The peptide AAKLVFF assembles into fibrils in water and nanotubes in methanol. Solid-state NMR data are consistent with fibrils constructed from β-sheet bilayers and nanotubes bounded by a wall of offset β-sheet monolayers. Remarkably distinct morphologies are thus traced to subtle differences in the arrangement of the same fundamental building blocks.  相似文献   

11.
Since their discovery, carbon nanotubes (CNTs) have become one of the most promising nanomaterials in many industrial and biomedical applications. Due to their unique physicochemical properties, CNTs have been proposed and actively exploited as multipurpose innovative carriers for cancer therapy. The aim of this article is to provide an overview of the status of applications, advantages, and up-to-date research and development of carbon nanotubes in cancer therapy with an emphasis on drug delivery, photothermal therapy, gene therapy, RNAi, and immune therapy. In addition, the issues of risk and safety of CNTs in cancer nanotechnology are discussed briefly.  相似文献   

12.
The redox chemistries of both the bromide oxidation and bromine reduction reactions are studied at single multi-walled carbon nanotubes (MWCNTs) as a function of their electrical potential allowing inference of the electron transfer kinetics of the Br2/Br redox couple, widely used in batteries. The nanotubes are shown to be mildly catalytic compared to a glassy carbon surface but much less as inferred from conventional voltammetry on porous ensembles of MWCNTs where the mixed transport regime masks the true catalytic response.

Schematic of a carbon nanotube impact in bromide solution.

The bromine–bromide redox couple plays an essential role in diverse energy storage devices including hydrogen–bromine, zinc–bromine, quinone–bromine, vanadium–bromide and bromide–polysulphide flow batteries.1–5 The Br2/Br redox couple is attractive as a cathode reaction due to its high standard potential, large solubility of both reagents, high power density and cost efficiency.6 The performance of such devices is generically limited by the thermodynamics and kinetics of the redox couple comprising the battery with fast (‘reversible’) electron transfer is essential. In many cases, including the Br2/Br couple the electrode reaction involves more than one electron as given in the stoichiometric reaction:2Br − 2e ⇄ Br2; E0 = 1.08 V vs. SHEwith, at high bromide concentrations, the possibility of the follow up chemical reaction7Br2 + Br ⇄ Br3Since electrons are usually transferred sequentially this implies that the mechanism is multistep with any of the individual mechanistic steps in principle being rate limiting. For this reason catalysts are commonly required to enhance the electrode kinetics at otherwise favourable electrode materials. One type of catalyst which has seen wide usage, including for the Br2/Br couple8,9 are carbon nanotubes (CNTs) with suggested advantages which include high surface area and the inherent porosity of CNT composites.10 The deployment of CNTs as a porous composite presents a further level of complexity to the electrode reaction beyond its multistep character because of the ill-defined mass transport within the porous layer. In particular ascertaining the intrinsic electron transfer kinetics and hence the level of catalysis, if any, is essentially impossible since these are masked in the voltammetric response by diffusional mass transport effects.11–14 Specifically the transport within the porous structure of CNT layers is dominated by thin-layer and other15,16 effects which give the illusion of electrochemical reversibility. In order to unscramble possible electro-catalysis of the bromine/bromide couple a different approach is needed.In the following we study both the electro-oxidation of bromide (BOR) and the electro-reduction of bromine (BRR) at single MWCNTs via ‘nano-impact (aka ‘single entity’) electrochemistry’17–20 in aqueous solution. In this approach a micro-wire electrode at a fixed potential is inserted in a suspension of CNTs in the solution of interest. From time to time a single CNT impacts the electrode, adopts the potential of the latter for the duration of the impact which in the case of CNTs can vary from 1–100 of seconds21–23 and sustained catalytic currents flow if the oxidation/reduction of interest is faster at the nanotube in comparison with the micro-wire electrode. The catalytic currents are studied as a function of potential revealing the electron transfer kinetics. Fig. 1 shows the concept of the experiment.Open in a separate windowFig. 1Schematic representation of ‘nano-impact’ electrochemistry on a carbon micro wire electrode for the oxidation of aqueous bromide from which the kinetics of the BOR are inferred. Analogous experiments but showing negative impact currents allow the inference of the kinetics of the BRR.The BOR and BRR were studied first, however, voltammetrically at an unmodified glassy carbon (GC) electrode as shown in Fig. 2 (black line) using 5.0 mM solutions of either NaBr or Br2 in 0.1 M HNO3. The midpoint potential was 0.82 V versus the saturated calomel electrode (SCE) consistent with the literature values for the formal potential of the Br2/Br couple.24 The voltammograms were analysed to give transfer coefficients of 0.45 ± 0.01 and 0.33 ± 0.01 (ESI, Section 2) for the BOR and BRR respectively. Both processes were inferred to be diffusional and the diffusion coefficients DBr and DBr2 were calculated to be 2.05 (±0.04) × 10−5 cm2 s−1 and 1.50 (±0.04) × 10−5 cm2 s−1 (ESI, Section 3) using the Randles–Ševčík equation for an irreversible reaction the values are consistent with literature reports.24 Then the electrodes were modified with 30 μg of MWCNTs consisting of ca. 125 monolayers (the calculation is given in the ESI, Section 9) of MWCNTs assuming that they are closely packed across the area of the GC electrode, and the resulting voltammograms are shown in Fig. 2 (red line). In comparison with the unmodified electrode, enhanced currents are seen for the Br2/Br couple which partly reflects the enhanced capacitance of the interface reflecting in turn the large surface area of the deposited nanotubes (ca. 60–120 cm2). Larger signals are also seen indicating a thin layer contribution from the material occluded within the porous layer which also leads to the apparently quasi-reversible shape of the voltammograms obtained for both reactions. A log–log plot of peak current (Ip) vs. scan rate (ν) showed a gradient value of 0.68 (±0.01) and 0.66 (±0.03) for the BOR and BRR (ESI, Section 4) confirming a mixed mass transport regime12,14 with a combination of semi-infinite diffusion and thin layer behaviour. The transition from the fully irreversible to the apparent quasi-reversible character is sometimes confused with electro-catalysis attributed to the CNTs rather than thin-layer diffusion. In order to ascertain the true catalytic response, single entity electrochemistry was measured to obtain the BOR and BRR responses at single CNTs.Open in a separate windowFig. 2Cyclic voltammograms at pristine GC (black line) and 30 μg MWCNTs dropcast on GC (red line) at a scan rate of 0.05 V s−1 (a) for the bromide oxidation reaction (BOR) in 5.0 mM NaBr in 0.1 M HNO3, (b) for the bromine reduction reaction (BRR) in 5.0 mM bromine in 0.1 M HNO3.For single entity measurements, a clean carbon wire (CWE, length 1 mm and diameter 7 μm) working electrode was used. Chronoamperograms were recorded at a constant applied potential of 0.2 V vs. SCE and 1.3 V vs. SCE for the BOR and BRR respectively (5.0 mM solutions). These values were selected in the light of Fig. 2 to provide a large overpotential for each reaction. Clear oxidative and reductive current steps were observed (Fig. 3). These were ascribed to the arrival of a MWCNT at the electrode surface and the resulting catalytic electron transfer for the duration of the impact. No steps were observed in the absence of MWCNTs (ESI, Fig. S4). The average residence time of the MWCNT was 1.2 (±0.5) seconds and the frequency of the collisions was 0.3 (±0.1) impacts per second. The average impact current for the BOR at 1.3 V vs. SCE was 2.8 (±0.2) nA (65 impacts) and for the BRR at 0.2 V vs. SCE it was 3.8 (±0.1) nA (70 impacts). The impact currents were assumed to be entirely faradaic since control experiments in 0.1 M HNO3 solution in the presence of 100 μg of MWCNTs (in the absence of Br and Br2) showed no obvious impacts as shown in ESI Section 10.Open in a separate windowFig. 3Chronoamperograms showing the impact step current (a) for the BOR in 5.0 mM NaBr in 0.1 M HNO3 at 1.3 V vs. SCE, (b) for the BRR in 5.0 mM bromine in 0.1 M HNO3 at 0.2 V vs. SCE.Further, impacts for both the BOR and BRR were observed at various potentials (ESI, Section 11) and analysed to obtain the average faradaic current at each potential. The average impact step current was plotted against the applied potential (Fig. 4). Two sigmoidal curves were obtained reflecting the current–potential response for either the bromide oxidation (BOR) or the bromine reduction (BRR). The curves reflect the average voltammograms (current–potential characteristics) for the Br2/Br redox reaction at single carbon nanotubes. The shape of the two sigmoidal curves reflects the onset of electrolysis followed by a diffusion controlled plateau at high over-potentials.25 Mass transport corrected Tafel analysis (Fig. 4; inset) showed the transfer coefficients β to be ca. 0.42 and α to be ca. 0.20 from the impacts for the BOR and BRR respectively (ESI, Section 6). The length distribution of the MWCNTs was calculated (ESI, Section 6) from the currents recorded at potentials corresponding to the plateau in Fig. 4 assuming that the reactions are (Fickian) diffusion controlled at the potentials used and by modelling the CNTs as cylindrical electrodes21 assuming a nanotube radius of 15 (±5) nm and the diffusion coefficients reported above. Chronoamperometry was also conducted for the BOR and BRR in the absence of MWCNTs at 1.3 V and 0.2 V vs. SCE respectively to confirm that no impact currents were contributed by the redox species in the electrolyte (ESI, Section 5). Alongside, chronoamperograms in 0.1 M HNO3 and 100 μg show that the impact current was contributed only by the Br and Br2 redox reaction and the results are shown in the ESI, Section 10.Open in a separate windowFig. 4Average step currents observed as a function of applied potential (a) for the BOR in 5.0 mM NaBr in 0.1 M HNO3 at, (b) for the BRR in 5.0 mM Bromine in 0.1 M HNO3; insets in both the cases show mass transport corrected Tafel analyses.The lengths were found to be 5.4 (±3.4) μm (BOR) and 5.9 (±1.3) μm (BRR) and are given in Fig. 5 (see ESI, Section 7 for calculations). These values were compared with previously reported dark-field optical microscopy data and good agreement was observed with the literature value of 5.3 (±2.1) μm.26 The observed consistency provides strong support for the choice of modelling the single entity voltammetry by analogy with that of a cylindrical electrode.Open in a separate windowFig. 5The length of MWCNTs calculated from the impact currents for the BOR (at 1.3 V vs. SCE) and BRR (at 0.2 V vs. SCE).It is evident that the single entity measurements allow a clear analysis of the catalytic behaviour of the carbon nanotubes by providing a well-defined diffusional regime conducive to the extraction of the electrode kinetics of both the bromide oxidation and the bromine reduction process. In contrast, electrodes were formed by ensembles of carbon nanotubes in the form of a porous layer where the mixed transport regime is not amenable to ready modelling and the dissection of thin-layer effects from the measured voltammetry. The electron transfer kinetics for both the BOR and BRR at single MWCNTs was then obtained via full simulation of the two single entity ‘voltammograms’ using the above measured diffusion coefficients and again treating the impacted MWCNT as a cylindrical electrode with uniform diffusional access and further assuming Butler–Volmer kinetics. For the BOR, one electron transfer was considered as given below,For the BRR the two electron transfer was modelled as,Br2 + 2e → 2BrThe set of parameters used for the analysis are given in the ESI, Section 8. By using the transfer coefficients deduced from Fig. 4, the only unknown is the standard electrochemical rate constant k which is determined by fitting the impact voltammogram measured relative to a formal potential for the Br2/Br couple of 0.82 V vs. SCE obtained from the voltammogram at pristine GC. Fig. 6 shows the fitting for the BOR and the BRR with rate constants kBOR of 1.0 (±0.1) × 10−3 cm s−1 and kBRR of 5.0 (±0.1) × 10−4 cm s−1 respectively. The transfer coefficients and rate constants obtained from impacts were compared to the voltammograms obtained at pristine GC for the BOR and BRR and are given in Open in a separate windowFig. 6DIGISIM simulated curves (black line) for average impact currents obtained at different potentials (red circles) (a) for the BOR with a rate constant (kBOR) of 1.0 (±0.1) × 10−3 cm s−1; (b) BRR with a kBRR of 5.0 (±0.1) × 10−4 cm s−1.Transfer coefficients and rate constants for the BOR in 5.0 mM NaBr in 0.1 M HNO3 and the BRR in 5.0 mM bromine in 0.1 M HNO3 obtained at the glassy carbon macroelectrode GC, and single MWCNT impact current
Analysed parameterOxidation of bromideReduction of bromine
Transfer coefficient (GC)β = 0.45α = 0.33
Transfer coefficient (impact current)β = 0.42α = 0.20
kBOR/cm s−1 (GC)9.5 (±0.1) × 10−52.0 (±0.1) × 10−5
kBRR/cm s−1 (impact current)1.0 (±0.1) × 10−35.0 (±0.1) × 10−4
Open in a separate windowIn summary, MWCNTs were studied for their catalytic behaviour towards the Br2/Br redox couple. From the drop-cast experiment, the ensemble of MWCNTs showed mixed mass transport behaviour complicating and precluding the elucidation of their catalytic behaviour. In contrast, single nano-impact electrochemistry of MWCNTs shows faster electrochemical rate constants compared to pristine GC. This confirms the catalytic activity of MWCNTs for the Br2/Br redox reaction but the values determined are insufficiently enhanced over glassy carbon leaving considerable room for improvement via the use of alternative electrocatalysts to carbon nanotubes.  相似文献   

13.
This letter focuses on the first result the preparation and its swelling behavior of a novel hybrid gelatin hydrogel with carbon nanotubes. A novel hybrid gelatin hydrogel with carbon nanotubes was synthesized by physical mixing method. The structure of the novel hydorgel obtained was characterized by SEM. Besides, the swelling behavior of the hydrogel synthesized was measured at different temperature. The results indicated that carbon nanotubes added could maintain the stability of the hybrid hydrogel at 37 °C. This suggests that the hybrid gelatin hydrogel with carbon nanotubes could be used in biomedical field. Besides, its application in protein concentrating has been discussed.  相似文献   

14.
15.
Zhou  Ying  Wang  Peilong  Su  Xiaoou  Zhao  Hong  He  Yujian 《Mikrochimica acta》2014,181(15):1973-1979

We are presenting an electrochemical immunosensor for the determination of the β-agonist and food additive ractopamine. A glassy carbon electrode (GCE) was modified with gold nanoparticles and a film of a composite made from poly(arginine) and multi-walled carbon nanotubes. Antibody against ractopamine was immobilized on the surface of the modified GCE which then was blocked with bovine serum albumin. The assembly of the immunosensor was followed by electrochemical impedance spectroscopy. Results demonstrated that the semicircle diameter increases, indicating that the film formed on the surface hinders electron transfer due to formation of the antibody-antigen complex on the modified electrode. Under optimal conditions, the peak current obtained by differential pulse voltammetry decreases linearly with increasing ractopamine concentrations in the 0.1 nmol•L−1 to 1 μmol•L−1 concentration range. The lower detection limit is 0.1 nmol•L−1. The sensor displays good stability and reproducibility. The method was applied to the analysis of spiked swine feed samples and gave satisfactory results.

Immunoassay for ractopamine based on glassy carbon electrode modified with gold nanoparticles and a film of a composite made from poly (arginine) and multi-walled carbon nanotubes was proposed. Under optimal conditions, the peak currents obtained by differential pulse voltammetry decreases linearly with increasing ractopamine concentrations in the 0.1 nmol•L−1 to 1 μmol•L−1 concentration range. The detection limit is 0.1 nmol•L−1.

  相似文献   

16.
We are presenting an electrochemical immunosensor for the determination of the β-agonist and food additive ractopamine. A glassy carbon electrode (GCE) was modified with gold nanoparticles and a film of a composite made from poly(arginine) and multi-walled carbon nanotubes. Antibody against ractopamine was immobilized on the surface of the modified GCE which then was blocked with bovine serum albumin. The assembly of the immunosensor was followed by electrochemical impedance spectroscopy. Results demonstrated that the semicircle diameter increases, indicating that the film formed on the surface hinders electron transfer due to formation of the antibody-antigen complex on the modified electrode. Under optimal conditions, the peak current obtained by differential pulse voltammetry decreases linearly with increasing ractopamine concentrations in the 0.1 nmol?L?1 to 1 μmol?L?1 concentration range. The lower detection limit is 0.1 nmol?L?1. The sensor displays good stability and reproducibility. The method was applied to the analysis of spiked swine feed samples and gave satisfactory results. Figure
Immunoassay for ractopamine based on glassy carbon electrode modified with gold nanoparticles and a film of a composite made from poly (arginine) and multi-walled carbon nanotubes was proposed. Under optimal conditions, the peak currents obtained by differential pulse voltammetry decreases linearly with increasing ractopamine concentrations in the 0.1 nmol?L?1 to 1 μmol?L?1 concentration range. The detection limit is 0.1 nmol?L?1.  相似文献   

17.
18.
In this paper, B3LYP and MP2 methods are used to investigate the binding energy of seventeen antiparallel and parallel β-sheet models. The results indicate that the binding energy obtained from B3LYP calculations is weaker than that obtained from MP2 calculations but the relative binding energy yielded by B3LYP is almost the same as that by MP2. For the antiparallel β-sheets in which two N-H⋯O=C hydrogen bonds can form either a large hydrogen-bonded ring or a small hydrogen-bonded ring, the binding energy increases obviously when one large ring unit is added, whereas it only changes slightly when one small ring unit is added because of the secondary electrostatic repulsive interaction existing in the small ring unit which is estimated to be about 20 kJ/mol. For the parallel β-sheet models, the binding energy increases almost exactly linearly with the increase of the chain length.  相似文献   

19.
Amphipathic peptides composed of alternating hydrophobic and hydrophilic amino acids self-assemble into amyloid-inspired, β-sheet nanoribbon fibrils. Herein, we report a new fibril type that is formed from equimolar mixtures of enantiomeric amphipathic peptides (L- and D-(FKFE)(2)). Spectroscopic analysis indicates that these peptides do not self-sort and assemble into enantiomeric fibrils composed of all-l and all-d peptides, but rather coassemble into fibrils that contain alternating L- and D-peptides in a "rippled β-sheet" orientation. Isothermal titration calorimetry indicates an enthalpic advantage for rippled β-sheet coassembly compared to self-sorted β-sheet assembly of enantiomeric peptides.  相似文献   

20.
The nonbonded and bonded force field parameters for carbon atoms in single-wall carbon nanotubes (SWNT) are fitted by means of quantum chemistry calculations with considering the periodic boundary conditions. The nonbonded parameters between carbon atoms and hydrogen atoms are fitted as well. All the fitted parameters are verified by comparing to quantum chemistry results and by calculating Young's modulus. Adsorption of Hydrogen molecules are then carried out on a bundle of self-assembled SWNTs. The adsorption isotherms are consistent to the Freundlich equation. Both hydrogen molecules adsorbed outside and inside the SWNTs are counted. According to our result, hydrogen molecules adsorbed inside the SWNTs are more stable at a relatively high temperature and are playing an important part in total amount of the adsorbed molecules. While C(10,10) have the highest adsorption capacities in most of the temperatures, hydrogen molecules inside C(5,5) are the most stable of all the four kinds of SWNTs. Thus, balancing adsorption capacities and strength of interaction can be important in choosing SWNT for gas adsorption. Besides, we deduct an equation that can describe the relation between hydrogen pressure and amount of SWNTs based on our simulation results. The hydrogen pressure may decrease by adding SWNTs in the system. The fitting method in our system is valid to SWNTs and can be tested in further studies of similar systems. © 2018 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号