首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, we report a histidine-based fluorescence probe for Cu(2+) and Hg(2+), in which the amino group and imino group were modified by two common protective groups, 9-fluorenylmethoxycarbonyl and trityl group, respectively. In a water/methanol mixed solution, the probe displayed a selective fluorescence "turn-off" response to Cu(2+) when the ratio of CH(3)OH/H(2)O was higher than 1:1. Specifically, when the solvent is changed to 1:1 methanol/water, the 304 nm fluorescence peak is enhanced, while the 317 nm peak is weakened, upon addition of either Cu(2+) or Hg(2+) ions. The mechanism for such distinct responses of the probe to Cu(2+) and Hg(2+) was further clarified by using NMR and molecular simulation. The experiment results indicated that the polarity of solvent could influence the coordination mode of 1 with Cu(2+) and Hg(2+), and control the fluorescence response as a "turn-off" or ratiometric probe.  相似文献   

2.
A novel chemosensor based on unsymmetrical squaraine dye (USQ-1) for the selective detection of Hg(2+) in aqueous media is described. USQ-1 in combination with metal ions shows dual chromogenic and "turn-on" fluorogenic response selectivity toward Hg(2+) as compared to Li(+), Na(+), K(+), Mg(2+), Ca(2+), Ba(2+), Al(3+), Cu(2+), Cd(2+), Mn(2+), Fe(3+), Ag(+), Pb(2+), Zn(2+), Ni(2+) and Co(2+) due to the Hg(2+)-induced deaggregation of the dye molecule. A recognition mechanism based on the binding mode is proposed based on the absorption and fluorescence changes, (1)H NMR titration experiments, ESI-MS study, and theoretical calculations.  相似文献   

3.
The first novel rhodamine B based sensor, rhodamine B hydrazide methyl 5-formyl-1H-pyrrole-2-carboxylate Schiff base (2) capable of detecting both Cu(2+) and Hg(2+) using two different detection modes has been designed and synthesized. The metal ion induced optical changes of 2 were investigated in MeOH:H(2)O (3:1) HEPES buffered solution at pH 7.4. Sensor 2 exhibits selective colorimetric recognition of Cu(2+) and fluorogenic recognition of Hg(2+) with UV-vis and fluorescence spectroscopy, respectively. Moreover, both of the Cu(2+) and Hg(2+) recognition processes are proven to be hardly influenced by other coexisting metal ions.  相似文献   

4.
Ma X  Wang J  Shan Q  Tan Z  Wei G  Wei D  Du Y 《Organic letters》2012,14(3):820-823
A "turn-on" fluorescent chemosensor with excellent selectivity and satisfactory sensitivity on Hg(2+) detection in 100% water media has been established employing a carbohydrate based Ferrier carbocyclization reaction. The probe has also presented satisfactory results for the imaging of Hg(2+) ions in cells and organisms.  相似文献   

5.
Dhir A  Bhalla V  Kumar M 《Organic letters》2008,10(21):4891-4894
A new fluorescent chemosensor based on the calix[4]arene of partial cone conformation possessing a dansyl moiety has been synthesized. The chemosensor demonstrates selective optical recognition of Hg(2+) and Cu(2+) in two contrasting modes. The receptor exhibited ratiometric sensing of Hg(2+) and "ON-OFF" type of fluorescence behavior in the presence of Cu(2+). The compound behaves as a fluorescent molecular switch upon chemical inputs of Hg(2+) and Cu(2+) ions.  相似文献   

6.
An organoselenium-based NSe(3) type of tripodal system 2 as a Hg(2+)-selective fluorescence "turn-on" probe is described. The "turn-on" fluorescence behavior of this selenotripod 2 is significant because it depends on Hg-Se bond formation and acts as a reporting unit for this system. The system exhibits immediate response (15 s) with a subnanomolar detection limit (0.1 nM) for the Hg(2+) ion. It efficiently detects both aqueous and nonaqueous Hg(2+) at 2 nM concentration.  相似文献   

7.
Wang H  Li Y  Xu S  Li Y  Zhou C  Fei X  Sun L  Zhang C  Li Y  Yang Q  Xu X 《Organic & biomolecular chemistry》2011,9(8):2850-2855
A novel rhodamine-based highly sensitive and selective colorimetric off-on fluorescent chemosensor for Hg(2+) ions is designed and prepared by using the well-known thiospirolactam rhodamine chromophore and furfural hydrazone as signal-reporting groups. The photophysical characterization and Hg(2+)-binding properties of sensor RS1 in neutral N, N-dimethylformamide (DMF) aqueous solution are also investigated. The signal change of the chemosensor is based on a specific metal ion induced reversible ring-opening mechanism of the rhodamine spirolactam. The response of the chemosensor for Hg(2+) ions is instantaneous and reversible. And it successfully exhibits a remarkably "turn on" response toward Hg(2+) over other metal ions (even those that exist in high concentration). Moreover, this sensor is applied for in vivo imaging in Rat Schwann cells to confirm that RS1 can be used as a fluorescent probe for monitoring Hg(2+) in living cells with satisfying results, which further demonstrates its value of practical applications in environmental and biological systems.  相似文献   

8.
Chen X  Nam SW  Jou MJ  Kim Y  Kim SJ  Park S  Yoon J 《Organic letters》2008,10(22):5235-5238
A Hg(2+)-selective rhodamine 6G derivative bearing thiolactone moiety was synthesized, and its crystal structure with Hg(2+) is presented to explain the binding mode. In addition, highly selective "off-on"-type fluorescent change upon the addition of Hg(2+) was also applied to bioimaging.  相似文献   

9.
Zhang G  Lin W  Yang W  Lin Z  Guo L  Qiu B  Chen G 《The Analyst》2012,137(11):2687-2691
The design of devices with multiple functions, simple handling procedures and sufficient sensitivity has drawn great interests in the field of analysis. Metal-nucleotide based pairs, such as T-Hg(2+)-T and C-Ag(+)-C complexes accompanied by SYBR Green I (SG), are used to selectively bind duplex-strand DNA by observing a bright fluorescence signal in this work, thus yielding a simple method for the rapid detection of Hg(2+) and Ag(+) without a complex labeling process. Based on this principle, 'OR' and 'AND' logic gates for the multiplexed analysis of Hg(2+) and Ag(+) were developed, and their practical application for the detection of Hg(2+) and Ag(+) in drinking water was reported.  相似文献   

10.
Xu H  Wang Y  Huang X  Li Y  Zhang H  Zhong X 《The Analyst》2012,137(4):924-931
In this work, we report a colorimetric assay for the screening of biothiols including glutathione (GSH), cysteine (Cys), and homocysteine (Hcys) based on Hg(2+)-mediated aggregation of gold nanoparticles (AuNPs). Hg(2+) can induce aggregation of thiol-containing naphthalimide (1) capped AuNPs due to the cross-linking interactions from the resulting "thymine-Hg(2+)-thymine" (T-Hg(2+)-T) analogous structure. When Hg(2+) is firstly treated with biothiols, followed by mixing with 1-capped AuNPs suspension, AuNPs undergo a transformation from an aggregation to a dispersion state depending on the concentration of biothiols. This anti-aggregation or re-dispersion of AuNPs is due to the higher affinity of Hg(2+) for biothiols relative to compound 1. The corresponding color variation in the process of anti-aggregation of AuNPs can be used for the quantitative screening of biothiols through UV-vis spectroscopy or by the naked eye. Under optimized conditions, a good linear relationship in the range of 0.025-2.28 μM is obtained for GSH, 0.035-1.53 μM for Cys, and 0.040-2.20 μM for Hcys. The detection limits of this assay for GSH, Cys, and Hcys are 17, 9, and 18 nM, respectively. This colorimetric assay exhibits a high selectivity and sensitivity with tunable dynamic range. The proposed method has been successfully used in the determination of total biothiol content in human urine samples.  相似文献   

11.
Newly synthesized rhodamine derivatives, L(1) and L(2), are found to bind specifically to Hg(2+) or Cr(3+) in presence of large excess of other competing ions with associated changes in their optical and fluorescence spectral behavior. These spectral changes are significant enough in the visible region of the spectrum and thus, allow the visual detection. For L(1), the detection limit is even lower than the permissible [Cr(3+)] or [Hg(2+)] in drinking water as per standard U.S. EPA norms; while the receptor, L2 could be used as a ratiometric sensor for detection of Cr(3+) and Hg(2+) based on the resonance energy transfer (RET) process involving the donor naphthalimide and the acceptor Cr(3+)/Hg(2+)-bound xanthene fragment. Studies reveal that these two reagents could be used for recognition and sensing of Hg(2+)/Cr(3+). Further, confocal laser microscopic studies confirmed that the reagent L(2) could also be used as an imaging probe for detection of uptake of these ions in A431 cells.  相似文献   

12.
Wu D  Huang W  Lin Z  Duan C  He C  Wu S  Wang D 《Inorganic chemistry》2008,47(16):7190-7201
A new chemosensor RF1 that combines a ferrocene unit and a rhodamine block via the linkage of a carbohydrazone binding unit was designed and prepared for the highly selective detection of Hg (2+) in natural water. This chemosensor displays great brightness and fluorescence enhancement following Hg (2+) coordination within the limit of detection for Hg (2+) at 1 parts per billion (ppb). The fluorescence intensities are nearly proportional to the amount of Hg (2+) at the ppb level. It is capable of distinguishing between the safe and the toxic levels of inorganic mercury in drinking water. Hg (2+)-binding also arouses the absorption of the rhodamine moiety in RF1 significantly with the chromogenic detection limit for Hg (2+) at 50 ppb. The conventional UV-vis spectroscopic method thus has the potential to provide the critical information about the mercury hazard assessment for industrial wastewater discharging. The obvious and characteristic color change of the titration solution from colorless to pink upon the addition of Hg (2+) demonstrates that RF1 can be used for "naked-eye" detection of Hg (2+) in water. The Hg (2+) complexation also causes a significant shift of the redox potential about the ferrocene/ferrocenium couple. The electrochemical responses provide the possibility to quantitative analysis of Hg (2+) at the parts per million (ppm) level. Preliminary investigations in natural water samples including seawater and freshwater indicate that RF1 offers a direct and immediate Hg (2+) detection in complex media, pointing out its potential utility in environment monitoring and assessment. The responses of RF1 are Hg (2+) specific, and the chemosensor exhibits high selectivity toward Hg (2+) over other Group 12 metals, alkali, alkaline earth metals, and most of the divalent first-row transition metals. The RF1-Hg (2+) complex is successfully isolated and the Hg (2+)-binding is reversible. The crystal structure and spectral properties of its congener RF2 that contains one ferrocene group and two rhodamine 6G moieties were also investigated for a comparison.  相似文献   

13.
A novel and simple fluorescent chemosensor based on rhodamine was designed and synthesized to detect Hg(2+) with high selectivity. The structure of chemosensor 1 was characterized by IR, (1)H NMR, and HRMS spectroscopies. Chemosensor 1 exhibited distinct fluorescent and colorimetric changes toward Hg(2+) in an ethanol/water (80/20, v/v) solution, which resulted in the formation of 1/Hg(2+) complex with the Hg(2+)-induced ring opening of the spirolactam ring in rhodamine. The reversibility of chemosensor 1 was verified through its spectral response toward Hg(2+) ions and TBAI (tetrabutylammonium iodide) titration experiments.  相似文献   

14.
A novel sensitive and specific Hg(2+) chemodosimeter, derived from 1',3'-dithiane-substituted 2,1,3-benzoxadiazole, displays "turn-on" fluorescent and colorimetric responses via an Hg(2+)-triggered aldehyde recovery reaction. Its potential to monitor Hg(2+) in living organisms has been demonstrated using zebrafish larvae.  相似文献   

15.
A new chemosensor which can detect Hg(2+) in water and Hg(2+)/Cu(2+) in acetonitrile and its application as a molecular keypad lock using Cu(2+) and F(-) as ionic inputs are demonstrated.  相似文献   

16.
Liu L  Zhang G  Xiang J  Zhang D  Zhu D 《Organic letters》2008,10(20):4581-4584
Two new tetraphenylethylene (TPE) compounds 1 and 2 bearing adenine and thymine moieties, respectively, were found to be fluorescence "turn on" chemosensors for Ag(+) and Hg(2+) by making use of the AIE feature of TPE motif and the specific binding of adenine/thymine with Ag(+)/Hg(2+).  相似文献   

17.
The effect of heavy metal ions, Cd(2+), Hg(2+) and Pb(2+) on (+)-catechin binding to bovine serum albumin (BSA) has been investigated by spectroscopic methods. The results indicated that the presence of heavy metal ions significantly affected the binding modes and binding affinities of (+)-catechin to BSA, and the effects depend on the types of heavy metal ion. One binding mode was found for (+)-catechin with and without Cd(2+), while two binding modes - a weaker one at low concentration and a stronger one at high concentration were found for (+)-catechin in the presence of Hg(2+) and Pb(2+). The presence of Cd(2+) decreased the binding affinities of (+)-catechin for BSA by 20.5%. The presence of Hg(2+) and Pb(2+) decreased the binding affinity of (+)-catechin for BSA by 8.9% and 26.7% in lower concentration, respectively, and increased the binding affinity of (+)-catechin for BSA by 5.2% and 9.2% in higher concentration, respectively. The changed binding affinity and binding distance of (+)-catechin for BSA in the presence of Cd(2+), Hg(2+) and Pb(2+) were mainly because of the conformational change of BSA induced by heavy metal ions. However, the quenching mechanism for (+)-catechin to BSA was based on static quenching combined with non-radiative energy transfer irrespective of the absence or presence of heavy metal ions.  相似文献   

18.
Tan J  Yan XP 《Talanta》2008,76(1):9-14
We report a simple twisted intramolecular charge transfer (TICT) chromogenic chemosensor for rapid and selective detection of Hg(2+) and Cu(2+). The sensor was composed of an electron-acceptor 4-fluoro moiety and an electron-donor 7-mercapto-2,1,3-benzoxadiazole species where the S together with the 1-N provided the soft binding unit. Upon Hg(2+) and Cu(2+) complexation, remarkable but different absorbance spectra shifts were obtained in CH(3)CN-H(2)O mixed buffer solution at pH 7.6, which can be easily used for naked-eye detection. The sensor formed a stable 2:1 complex with Cu(2+), and both 2:1 and 3:1 complexes with Hg(2+). While alkali-, alkaline earth- and other heavy and transition metal ions such as Na(+), Mg(2+), Mn(2+), Co(2+), Ni(2+), Ag(+), Zn(2+), Pb(2+) and Cd(2+) did not cause any significant spectral changes of the sensor. This finding is not only a supplement to the detecting methods for Hg(2+) and Cu(2+), but also adds new merits to the chemistry of 4,7-substituted 2,1,3-benzoxadiazoles.  相似文献   

19.
A well-designed oligonucleotide functionalized for Hg(2+) identification and Ru(phen)(3)(2+) intercalation is used to develop a "turn-on" electrochemiluminescent (ECL) biosensor for the determination of Hg(2+) in a drop (10 μL) of sample.  相似文献   

20.
A hetarylazo dye appended with an aza crown ether detects and discriminates Hg(2+) and Pb(2+) from each other by immediate visual observation, significant from an 'on-site' evaluation point of view. It is accompanied by absorption based changes and is convincingly established from (1)H NMR, TD-DFT and electrochemical studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号