首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— Photodynamic therapy (PDT) of cancer is a modality that relies upon the irradiation of tumors with visible light following selective uptake of a photosensitizer by the tumor tissue. There is considerable emphasis to define new photosensitizers suitable for PDT of cancer. In this study we evaluated six phthalocyanines (Pc) for their photodynamic effects utilizing rat hepatic microsomes and human erythrocyte ghosts as model membrane sources. Of the newly synthesized Pc, two showed significant destruction of cytochrome P-450 and monooxygenase activities, and enhancement of lipid peroxidation, when added to microsomal suspension followed by irradiation with ∼ 675 nm light. These two Pc named SiPc IV (HOSiPcOSi[CH3]2[CH2]3N[CH3]2) and SiPc V (HOSiPcOSi[CH3]2[CH2]3N[CH3]31 I) showed dose-dependent photodestruction of cytochrome P-450 and monooxygenase activities in liver microsomes, and photoenhancement of lipid peroxidation, lipid hydroperoxide formation and lipid fluorescence in rnicrosomes and erythrocyte ghosts. Compared to chloroaluminum phthalocyanine tetrasulfonate, SiPc IV and SiPc V produced far more pronounced photodynamic effects. Sodium azide, histidine, and 2,5-dimethylfuran, the quenchers of singlet oxygen, afforded highly significant protection against SiPc IV- and SiPc V-mediated photodynamic effects. However, to a lesser extent, the quenchers of superoxide anion, hydrogen peroxide and hydroxyl radical also showed some protective effects. These results suggest that SiPc IV and SiPc V may be promising photosensitizers for the PDT of cancer.  相似文献   

2.
Abstract— Photodynamic induced cytotoxicity by Victoria blue BO (VB-BO), merocyanine 540 (MC540), Nile blue A (NB) and 4-tetrasulfonatophenyl-porphyrin (4-TSPP) has been studied on two human leukemic cell lines: K-562 and TF-1. Cells were incubated with dyes and irradiated with different doses of white light. Cell survival was assessed by propidium iodide (PI) staining using flow cytometry analysis. Concentrations of 5 x 10 8 M VB-BO were found to kill 75% of cells, and a concentration of 1 × 10−7 M induced more than 99% of cell killing. To obtain the same cytotoxic level, the presence of 2.6 × 10−5 M of MCS40 during irradiation was needed. Under the conditions used, NB was ineflective as a photosensitizer, although uptake studies showed that this dye was taken by the cells in much greater amounts than any other studied dye. Cell cycle distribution of TF-1 cells, surviving MC540 or VB-BO photoscnsitization has bccn studied by flow cytometry analysis after staining with Hoechst 33342 and PI. It was found that cells in G1 phase were slightly more resistant toward MCS40– and VB-BO-mediated photosensitization than cells in other phascs of the ccll cycle  相似文献   

3.
Abstract— Anionic polyelectrolytes functionalized with the 5-deazaflavin group (dFl) were synthesized. The lifetime of the triplet excited dFl in the polyelectrolytes with a 2-mol% dFl content (AdFl-2) was about 10 times longer than that of a low molecular weight analog (AdFl-M). 2-Mercaptoethanol (RSH) reduced the triplet dFl with the rate constant of k red= 2.01 × 108 M −1 s−1 for AdFl-M and k red= 4.4 × 107 M −1 s−1 for AdFl-2. A zwitterionic viologen (SPV) oxidized the triplet dFl with the rate constant of k red= 3.69 × 109 M −1 s−1 for AdFl-M and k ox= 7.4 × 108 M−1 s−1 for AdFl-2. The smaller rate constants for the polymer system were discussed in terms of the hindering effect of the macromolecular microenvironment. The back electron transfer was shown to be drastically slowed in the AdFl-2-SPV system as a result of the intensive electrostatic effect of the polyelectrolytes. The buildup of the viologen radicals was studied under the steady-state illumination of the three component systems including viologen and RSH. The dFl group was demonstrated to serve as a very efficient photosensitizer in the oxidative cycle in case back electron transfer was retarded. This is the case of the AdFl-2-SPV system which gave the quantum yield of about 0.4 for the SPV buildup. By comparison, the AdFl-2-MV2+ system resulted in a much slower buildup of MV +radicals.  相似文献   

4.
Abstract— Most sensitizers used for the photodynamic therapy (PDT) of tumors photobleach on illumination. Thus, it is of interest to examine the photobleaching behavior of new sensitizers proposed for use in PDT. This report surveys the quantum yields and kinetics of the photobleaching of mono- l -aspartyl chlorin e6 (NPe6), a hydrophilic chlorin that has many of the photoproperties desirable in a sensitizer for clinical PDT. It is a very effective sensitizer for the PDT of several types of model tumors in animals and is now in Phase I clinical trials. The quantum yield of NPe6 photobleaching in pH 7.4 phosphate buffer in air was 8.2 × 10−4; this is greater than the yields for typical porphyrin photosensitizers. For example, the yields for hematoporphyrin and uroporphyrin are 4.7 × 10 5 and 2.8 × 10−5, respectively. The yield decreased significantly in organic solvents of low dielectric constant. The Sn derivative of NPe6 was more light stable than NPe6 (yield = 5.7 × 10 −6), while the Zn derivative was more sensitive (yield = 1.9 × 10−2). Oxygen appeared to be necessary for the photobleaching of NPe6; however, bleaching was not inhibited by 100 mM azide, an efficient quencher of singlet oxygen. The photooxidizable substrates cysteine, dithiothreitol and furfuryl alcohol increased the quantum yield of photoblcaching two- to four-fold, while the electron acceptor, met-ronidazole, increased it almost six-fold. Photobleaching yields for several other chlorins were also measured.  相似文献   

5.
Abstract— In connection with the use of red light-photosensitizers for photodynamic therapy, the redox reactivity of excited metallophthalocyanines (M = Al, Ga) was investigated by flash photolysis in order to establish whether photooxidations proceed by Foote's mechanisms I or II. Aminoacids (tryptophan, tyrosine) were seen to function as electron transfer quenchers of the excited phthalocyanines with rate constants 107 k 104 M -1 s-1. This was not the case of purines or ATP. The ability of the excited phthalocyanines to sensitize photooxidations by mechanisms I and II is discussed in terms of evaluated rate constants.  相似文献   

6.
The properties of a newly isolated anionic tobacco peroxidase from transgenic tobacco plants overexpressing the enzyme have been studied with respect to the chemiluminescent reaction of luminol oxidation. These were compared to the properties of horseradish peroxidase in the cooxidation of luminol and p -iodophenol, the enhanced chemiluminescence reaction. The pH, luminol and hydrogen peroxide concentrations were optimized for maximum sensitivity using the tobacco enzyme. The detection limit for the latter under the optimal conditions (2.5 m M luminol, 2 m M hydrogen peroxide, 100 m M Naborate buffer, pH 9.3) was about 0.1 p M , which is at least five times lower than that for horseradish peroxidase in enhanced chemiluminescence with p -iodophenol. The rate constants for the elementary steps of the enzyme-catalyzed reaction have been determined: k 1= 4.9 × 106 M −1 s1, k 2= 7.3 × 106 M −1 s−1, k 3= 2.1 × 106 M −1 s−1 (pH 9.3). The similarity of these rate constants is unusual for plant peroxidases. The high catalytic activity of tobacco peroxidase in the luminescent reaction is explained by the high reactivity of its Compound II toward luminol and the high stability of the holoenzyme with respect to heme dissociation. This seems to be a unique property of this particular enzyme among other plant peroxidases.  相似文献   

7.
Abstract— N,N'-bis(2-ethyl-1,3-dioxolane)-kryptocyanine (EDKC), a lipophilic dye with a delocalized positive charge, photosensitizes cells to visible irradiation. In phosphate-buffered saline (PBS), EDKC absorbs maximally at 700 nm (ε= 1.2 × 105 M−1 cm−1) and in methanol, the absorption maximum is at 706 nm (ε= 2.3 × 105 M−1 cm−1). EDKC partitions from PBS into small unilamellar liposomes prepared from saturated phospholipids and into membranes prepared from red blood cells (RBC) and binds to human serum albumin (HSA). The EDKC fluorescence maximum red shifts from 713 nm in PBS to 720–725 nm in liposomes and RBC membranes and the fluorescence intensity is enhanced by factors of 14–35 compared to PBS (φ= 0.0046). EDKC is thermally unstable in PBS (T1/2= 2 h at 1.3 × 10−5 M EDKC), but stable in methanol. In liposomes and RBC membranes, EDKC is 10 times more stable than in PBS, indicating that it is only partially exposed to the aqueous phase. Quenching of EDKC fluorescence in liposomes and RBC membranes by trinitrobenzene sulfonate also indicates that EDKC is not buried within the membranes. Photodecomposition of EDKC was oxygen-dependent and occurred with a low quantum yield (6.4 × 10−4 in PBS). Singlet oxygen was not detected upon irradiation of EDKC in membranes or with HSA since the self-sensitized oxidation of EDKC occurred at the same rate in D2O as in H2O and was not quenched by sodium azide or histidine.  相似文献   

8.
A lithium phthalocyanine radical and the analogous aluminum phthalocyanine radical were synthesized as part of an investigation of isostructural dopants. An improved synthesis of the free base of octa(pentoxy)phthalocyanine (H2Pc*) involves the reduction of 1,2-dicyano-4,5-dipentoxybenzene with hydroquinone. Deprotonation with lithium bis(trimethylsilyl)amide leads to the dilithium derivative Li2Pc* and subsequent oxidation with ferrocenium yields the radical LiPc*. Treatment of H2Pc* with Et2AlCl gives ClAlPc* and reduction with sodium amalgam yields AlPc*, the first reported aluminum phthalocyanine radical. In the solid state LiPc* and AlPc* are electrical conductors with pressed-pellet conductivities of 8 × 10−11 Ω−1 cm−1 and 5 × 10−7 Ω−1 cm−1, respectively.  相似文献   

9.
Abstract— The deactivation rate of excited pyrene by indole strongly depends on the polarity of the media. In micellar systems (Triton X-100, cetyltrimcthylammonium chloride (CTAC) and sodium dodecylsulfate (SDS) the deactivation efficiency is enhanced due to the high local concentration of indole in the micellar pseudophase. Quantitative interpretation of the data in CTAC and SDS micelles requires to take into account indole exchange between the micelles and the aqueous phase. In SDS micelles, where due to their smaller size the exchange process is more relevant, the exit and entrance rates are (3.0 ± 0.6) x 106 and (1.2 ± 0.3) x 1010 M −1s−1 respectively. Intramicellar bimolecular quenching constants are (1.1 ± 0.2) x 108 M−1 s−1 (1.4 ± 0.2) x 108 M −1 s−1 and (1.5 ± 0.2) x 108 M −1 s−1 in Triton X-100, SDS and CTAC respectively. These rates are similar to those measured in ethanol rich ethanol-water homogeneous solutions. This is in agreement with the average polarity sensed by both pyrene and indole in the micellar pseudophases.  相似文献   

10.
Abstract— Ferrideuteroporphyrin in benzene, water or micelle solutions containing primary or secondary alcohols as well as in pure or basic 2-propanol solutions is clearly reduced to the ferrous state by continuous light irradiation in the Soret region. Quantum yields range between 4 × 10−4 and 3 × 10−2 depending on the solvents used and on the coordination state of the ferric porphyrin. As inferred from laser pulse photolysis experiments, the primary chemical step appears to be the homolytic cleavage of the bond between the ferric ion and a coordinated alcoholate anion leading to the ferrous porphyrin and the alkoxy radical. This cleavage is found to occur within less than 50 ns. The alkoxy radical rearranges leading to the α-hydroxyalkyl radical which reacts with excess ferric porphyrin leading to further reduction. The reaction rate constant for the reaction of α-hydroxyisopropyl radicals is found to be k = (2.1 ± 0.3) × 108 M −1 s−1 in pure 2-propanol. As expected, this rate is greatly increased in basic 2-propanol where α-hydroxyisopropyl radicals deprotonate.  相似文献   

11.
Abstract— We report the formation of an electrostatic complex between (16-pyrimidinium crown-4)tetranitrate (16PC4) and tetrakis-(4-sulfonatophenyl)porphyrin (4SP) in aqueous solution. Ground-state complex formation results in a red shift of the 4SP visible absorption bands and a decrease in absorbance of the Soret band. The equilibrium constant for complex formation (determined from optical titrations) is found to be (2.0 ± 0.2) × 105 M −1. In addition, the data fit to an expression describing a 1:1 stoichiometry. Excitation of the complex results in quenching of both the excited singlet and triplet states of the associated porphyrin. The singlet-state lifetime decreases from 10 ns for the free porphyrin to 1.5 ns in the presence of 16PC4 at low solution ionic strengths. In addition, evidence is presented for triplet-state quenching within the complex with k q= (1.1 ± 0.1) × 104 s−1. The mechanism of quenching is tentatively assigned to electron transfer from either the excited singlet or excited triplet state of the porphyrin to the ground state of the 16PC4.  相似文献   

12.
Abstract— The fluorescence decay profiles, relative quantum yield, and transmission of the phycoerythrin a subunit, isolated from the photosynthetic antenna system of Nostoc sp., were measured using single picosecond laser excitation. The fluorescence decay profiles were found to be intensity independent for the intensity range investigated (4 × 1013 and 4 × 1015 photons-cm-2 per pulse). The decay profiles were fitted to a model assuming both chromophores absorb and fluoresce. The inferred total deactivation rates for the two chromophores, in the absence of energy transfer and when the effects of the response time of the streak camera and the finite pulse width are properly included, are 1.0 × 1010s' and 1.0 × 109 s 1 for the s and f chromophores. respectively, whereas the transfer rate between the two fluorophorcs is estimated to be 1.0 × 1010 s−1 giving a s→ f transfer rate on the order of (100 ps)−1. Steady-atate polarization measurements were found to be equal to those calculated using the rate parameters inferred from the kinetic model fit to the fluorescence decays. The apparent decrease in the relative fluorescence quantum yield and increase of the relative transmission with increasing excitation intensity is suggestive of ground state depletion and upper excited state absorption. Evidence suggests that exciton annihilation is absent within isolated α subunits for the intensity range investigated (4 × 1013 to 4 × 1015 photons-cm 2 per pulse).  相似文献   

13.
Abstract— A comparison of the transient absorption spectra from the photolysis of disulfides in solution suggests that C-S bond breakage is a common primary photolytic process. This process becomes more important as the resulting carbon centered radical is stabilized by increasing alkyl substitution or resonance interaction with an aromatic system. The perthiyl radical product is characterized by λmax∽380 nm,ε380∽1700 M −1 cm−1 and decays by second order kinetics with k 2∽3.7×108 M −1 s−1 in water.
In the presence of O2, the photolysis of disulfides which produce the thiyl radical give transient absorptions in the 500–600 nm region. Possible identities of these transients are discussed.  相似文献   

14.
Eleven silicon phthalocyanines which can be grouped into two homologous series [SiPc[OSi(CH3)2(CH2)(n)N(CH3)2]2, n = 1-6 (series 1), and SiPc[OSi(CH3)2(CH2)3N((CH2)(n)H)2]2, n = 1-6 (series 2)] as well as an analogous phthalocyanine, SiPc[OSi(CH3)2(CH2)3NH2]2, were synthesized. The ground state absorption spectra, the triplet state dynamics, and singlet oxygen quantum yields of 10 of these phthalocyanines were measured. All compounds displayed similar ground state absorption spectral properties in dimethylformamide solution with single Q band maxima at 668 +/- 2 nm and B band maxima at 352 +/- 1 nm. Photoexcitation of all compounds in the B bands generated the optical absorptions of the triplet states which decayed with lifetimes in the hundreds of microseconds region. Oxygen quenching bimolecular rate constants near 2 x 10(9) M(-1) s(-1) were measured, indicating that energy transfer to oxygen was exergonic. Singlet oxygen quantum yields, phi(delta), were measured, and those phthalocyanines in which the axial ligands are terminated by dimethylamine residues at the end of alkyl chains having four or more methylene links exhibited yields near > or = 0.35. Others gave singlet oxygen quantum yields near 0.2, and still others showed singlet oxygen yields of <0.1. The reduced singlet oxygen yields are probably caused by a charge transfer quenching of the 1pi,pi* state of the phthalocyanine by interaction with the lone pair electrons on the nitrogen atoms of the amine termini. In some cases, these can approach and interact with the electronically excited pi-framework, owing to diffusive motions of the flexible oligo-methylene tether.  相似文献   

15.
Dichlorosilicon phthalocyanine (Cl2SiPc) and bis(tri-n-hexylsiloxy) silicon phthalocyanine (HexSiPc) have been evaluated in vitro as potential photosensitizers for photodynamic therapy (PDT) against the human amelanotic melanoma cell line M6. Each photosensitizer is dissolved in a solvent-PBS mixture, or entrapped in egg-yolk lecithin liposomes or in Cremophor EL micelles. The cells are incubated for 1 h with the sensitizer and then irradiated for 20 min, 1 h or 2 h (lambda > 480 nm, 10 mW cm-2). The photocytotoxic effect is dependent on the photosensitizer concentration and the light dose. Higher phototoxicity is observed after an irradiation of 2 h: treatment with a solution of photosensitizer (2 x 10(-9) M) leads to 10% (HexSiPc in egg-yolk lecithin liposomes) or 20% (Cl2SiPc in DMF-PBS solution) cell viability. After 1 h incubation and 20 min of light exposure, the photodynamic effect is connected with the type of delivery system used. For HexSiPc, lower cell viability is found when this photosensitizer is entrapped in egg-yolk lecithin instead of solvent-PBS or for Cremophor EL micelles with Cl2SiPc. Liposome-delivered HexSiPc leads to lipid damage in M6 cells, illustrated by an increase of thiobarbituric acid-reacting substances (TBARs), but the change is not significant with Cremophor EL. The same is observed for the antioxidative defences after photodynamic stress. The cells irradiated with HexSiPc entrapped in liposomes display an increase of superoxide dismutase (SOD) activity and a decrease of glutathione (GSH) level, glutathione peroxidase (GSHPx) and catalase (Cat) activities.  相似文献   

16.
The Girard's reagent P derivative of canthaxanthin ((GRP)2-canthaxanthin), a dicationic carotenoid, forms a highly water-dispersible complex with (2-hydroxypropyl)-γ-cyclodextrin. The UV–visible light spectrum of the complex is consistent with some degree of aggregation, but the spectrum is independent of concentration from 7.5 to 750 μ m . Stern-Vomer plots for singlet-oxygen quenching by the complex are linear over a concentration range of 0–20 μ m . In the presence of 1 m m (2-hydroxypropyl)-γ-cyclodextrin, the singlet-oxygen quenching constant for the complex is 7.9 ± 0.9 × 108  m −1s−1. This is about an order of magnitude lower than the singlet-oxygen quenching constants for (GRP)2-canthaxanthin in various organic solvents. The properties of the complex are also compared with the properties of (GRP)2-canthaxanthin solubilized in neat water and in water containing various detergents. The singlet-oxygen quenching constant for (GRP)2-canthaxanthin in micelles depends strongly on the specific detergent used, varying from 9.4 × 108  m −1s−1 for hexadecyltrimethylammonium bromide (CTAB) to 1.24 ± 0.4 × 1010  m −1s−1 for sodium dodecyl sulfate. The small quenching constant in CTAB micelles correlates with spectroscopic evidence for aggregation of the (GRP)2-canthaxanthin in this detergent.  相似文献   

17.
Abstract— Metallophthalocyanines (MPc) and tetrasubstituted magnesium phthalocyanines (MgPcR4) were investigated as sensitizers for the photoreduction of methylviologen (MV2+) under visible light(420–800 nm) irradiation using disodium ethylenediaminetetraacetic acid (Na2EDTA) as an electron donor in dimethyl formamide (DMF)-water mixture. Magnesium phthalocyanine and aluminium phthalocyanine were found to be the most efficient sensitizers among nine MPc's examined (M = 2Li, 2Na, Mg, Ca, Al(Cl), Fe, Ni, Co, and Zn). The following sequence of the efficiency among MgPc and MgPcR4's was obtained.  相似文献   

18.
The steady-state UVA (350 nm) photolysis of ( E )-β-ionone ( 1 ) in aerated toluene solutions was studied by 1H NMR spectroscopy. The formation of the 1,2,4-trioxane ( 2 ) and 5,8-endoperoxide ( 5 ) derivatives in the ratio of 4:1 was observed. Time-resolved laser induced experiments at 355 nm, such as laser-flash photolysis, photoacoustic and singlet oxygen 1O2 phosphorescence detection, confirmed the formation of the excited triplet state of 1 with a quantum yield Φ T = 0.50 as the precursor for the generation of singlet oxygen 1O2 ( Φ Δ = 0.16) and the isomeric α-pyran derivative ( 3 ), which was a reaction intermediate detected by NMR. In turn, the reaction of 1O2 with 1 and 3 occurred with rate constants of 1.0 × 106 and 2.5 × 108  m −1s−1 to yield the oxygenated products 5 and 2 , respectively, indicating the relevance of the fixed s-cis configuration in the α-pyran ring in the concerted [2+4] cycloaddition of 1O2.  相似文献   

19.
Aqueous solutions of plasmid (pBR322 and pTZ18R) and calf thymus DNA were excited by 20 ns laser pulses at 193 nm. The quantum yields of single- and double-strand break formation, interstrand cross-links, locally denatured sites, (6–4)photoproducts and biological inactivation (Φssb, Φdsb, Φicl, Φids, Φ6–4 and Φina, respectively) were measured. The quantum yields are virtually independent of intensity, demonstrating a one-quantum process. The obtained values in aerated neutral solution in the absence of additives are Φssb= 1.5 × 10--3, Φdsb, = 0.06 × 10--3 (dose: 10–200 J m-2), ΦiclIds= 0.1 × 103 and Φ6–4= 0.5 × 10--3 Both Φssb and Φdsb decrease strongly with increasing concentrations of TE buffer (0.01–10 m M ). Biological inactivation of the pTZ18R plasmid was determined from the transformation efficiency of Escherichia coli bacteria strains AB1157, AB1886 uvr and A82480 uvr rec; the Φina values are 1.4 × 103, 2.1 × 103 and 3 × 10--3, respectively. The monoexponential survival curves in all cases show that a single damage site leads to inactivation (one single hit). The biological consequences of different photoproducts are discussed.  相似文献   

20.
Abstract A photobiological study was camed out on the bacterium Escherichia coli in order to determine whether stimulation of growth occurred after irradiation of an inoculum with coherent red light. No enhancement or inhibition of growth was observed for cultures of the bacterium following irradiation of inocula with a Helium-neon laser (continuous wave, λ= 632.8 nm) at irradiances of 7.7 × 1015 and 1.8 × 1016 photons cm−2 s−1 using fluences of 4.5 × 10−-1 and 4.5 J cm−2 at each irradiance. Bacterial growth in irradiated and control cultures was monitored during a growth period of ca 2 h using a viable count technique after inocula in the early exponential phase had been diluted with fresh growth medium. These results do not provide support for the work of Kam et al . (1983, Nuov. Cim . 2D, 1138–1144), and Tiphlova and Karu (1988, Photochem. Photobiol . 48 , 467–471), which appear to show substantial enhancement of E. coli growth under these conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号