首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The density functional theory(DFT) and self-consistent periodic calculation were used to investigate the methanol adsorption on the Pt-Mo(111)/C surface.The adsorption energies,equilibrium geometries and vibration frequencies of CH3OH on nine types of sites on the Pt-Mo(111)/C surface were predicted and the favorite adsorption site for methanol is the top-Pt site.Both sites of valence and conduction bands of doped system have been broadened,which are favorable for electrons to transfer to the cavity.The possible decomposition pathway was investigated with transition state searching and the calculation results indicate that the O-H bond is first broken,and then the methanol decomposes into methoxy.The activation barrier of O-H bond breaking with Pt-Mo catalyst is only 104.8 kJ mol-1,showing that carbon supported Pt-Mo alloys have promoted the decomposition of methanol.Comparing with the adsorption energies of CH3OH on the Pt(111)/C surface and that of CO,the adsorption energies of CO are higher,and Pt(111)/C is liable to be oxidized and loses the activity,which suggests that the catalyst Pt-Mo(111)/C is in favor of decomposing methanol and has better anti-poisoning ability than Pt(111)/C.  相似文献   

2.
Bond-order conservation-Morse potential (BOC-MP) approach hasbeen used to study the mechanism of methanol decomposition on the clean andoxygen-modified Fe(100), Cu (100) surfaces. On the clean Cu (100) surfacemethanol was adsorbed in molecular forms and desorbed without dissociation,but on the clean Fe(100) surface it decomposed via a methoxy (CH_3O) inter-mediate into carbon monoxide (CO) and hydrogen (H_2) mainly, or into methyl(CH_3) and hydroxyl (OH) species directly. The thermal stability of methoxyincreased in the presence of pre-adsorbed oxygen(O_3). Hollow site O_3 poisonedthe decomposition of methanol, but non-hollow site O_3 promoted the decomposi-tion of methanol into the methoxy, which decomposed and selectively led to theformation of formaldehyde (H_2CO) on oxygen-modified Cu surfaces. The for-mation of formaldehyde via a disproportionation reaction of methoxy is also dis-cussed.  相似文献   

3.
Bond-Order Conservation-Morse Potential(BOC-MP)approach hasbeen used to study the decomposition of methanol(CH_3OH)onFe(111),Pd(111),Pt(111)and Cu(111)surfaces.The result shows:The scission of O-H,C-O bond in methanol occurs on Fe,but O-H bond is activated on Cu,andO-H,C-O bonds are activated on Pd,Pt.O-H bond is broken into methoxy(CH_3O_s),up to the final product(CO).C-O bond is broken into(CH_(2.)+H_2O_3),then leads to the formation of hydrogenated species CH_(3.2),CH_(4.8)on Ptand Pal,while broken into either(CH_(2,s)+H_2O_s)or(CH_(3,s)+OH_s)on Fe.The selectivity of methanol decomposition and the thermal stability of methoxyincrease in the order of Fe相似文献   

4.
The decomposition of methoxy on Cu(111), Ag(111), Au(111), Ni(111), Pt(111), Pd(111), and Rh(111) has been studied in detail by the density functional theory calculations. The calculated activation barriers were successfully correlated with the coupling matrix element V 2 ad and the d-band center (ε d ) for the group IB metals and group VIII metals, respectively. By comparison of the activation energy barriers of the methoxy decomposition on different metals, it was found that Pt is the best catalyst for methoxy decomposition. The possible reason why the metallic Pt is the best catalyst has been analyzed from both the energetic data and the electronic structure information, that is, methoxy decomposition on Pt(111) has the largest exothermic behavior due to the closest p-band center of the CH 3 O among all metals after the adsorption.  相似文献   

5.
The adsorption and diffusion of N atoms on the three low-index Cu planes were studied using 5-parameter Morse potential (5-MP) method, and the best theory-experiment agreement was obtained. N atoms of Cu(100) surface sit on the fourfold hollow site with the vertical height of 0.018 nm closely coplanar with the topmost copper layer, and the four Cu-N bond lengths are 0.182 nm and the fifth Cu-N distance is 0.199 nm. For Cu(111) system, the existence of aberrant Cu(100) reconstructed structure is approved at higher coverage, and at low coverage the structure is almost an ideal Cu(111) surface structure. With respect to Cu(110) system, the N atoms are adsorbed at LB and H3 sites, not at SB site. The diffusion passage and diffusion barrier of adsorbed N atoms were also studied.  相似文献   

6.
《结构化学》2019,38(12)
The adsorption and dissociation behaviors of methanol on Pd(111), Pd/Au(111) and Pd/Rh(111) surfaces were studied using a periodical slab model and the PW91 generalized gradient approximation(GGA) within the framework of first-principles calculations based on density functional theory(DFT). The adsorption energy and geometric parameters for the three surfaces showed that methanol is preferentially adsorbed onto the top-Pd sites and that the adsorption energy of methanol on these surfaces decreases in the order Pd/Au(111) Pd/Rh(111) Pd(111). After adsorption, the C–O, C–H and O–H bonds in methanol adsorbed onto these surfaces are elongated and the vibrational stretching frequency of the O–H bond is obviously redshifted. Furthermore, the first step for the possible dissociation pathway for methanol on these surfaces was calculated. Our results indicate that the O–H bond in methanol decomposes producing methoxy and a hydrogen atom, with the Pd/Au(111) surface exhibiting the smallest dissociation barrier.  相似文献   

7.
The adsorption process and hydrogenation mechanisms of 2-methylthiophene on the Pt(111) surface have been elucidated using density functional theory(DFT). The optimal adsorption sites of reactants, intermediates, and products as well as the activation energy and reaction energy of each elementary reactions were investigated. The results turned out that the 2-methylthiophene tilt to the Pt(111) catalyst with the C_1–C_2 double bond at the top site was the most stable. During the hydrogenation process, the heat of reaction almost located at the negative side, so dropping the temperature is good for the occurrence of hydrogenation process. The hydrogenation steps of mechanism take place along C_2→C_3→C_1→C_4→S→C_1 to generate the product of pentane-2-thiol, in which the first step with the highest energy barrier is the rate-determining step.  相似文献   

8.
The HCNH and CNH2 adsorption on different coordination sites of Cu(100) was theoretically studied considering the cluster approach. The present calculations show that the bridge site is the most favorite for CNH2 perpendicularly adsorbed on the Cu(100) surface via the C atom. For HCNH absorbed on the Cu(100) surface, the parallel adsorption mode with the C and N atoms nearly directly above the adjacent top sites of Cu(100) surface is the most favored. Both CNH2 and HCNH are strongly bound to the Cu(100) surface with CNH2 which is lightly stable (2.51 kJ·mol^-1), indicating that both species may be co-adsorbed on the Cu(100) surface.  相似文献   

9.
WANG  Yu-Hang CHEN  Yong LI  Jun-Qian 《结构化学》2011,30(8):1154-1160
The adsorption and decomposition of N2O on the InN (0001) surface have been explored employing density functional theory method. To study the most favorable N2O adsorption model, ten typical adsorption cases (four for the parallel style and six for the vertical style) were proposed. The calculated results indicate that the parallel models are energetically preferred over the vertical models. The parallelly adsorbed N2O prefers to be dissociated on the surface, the dissociated O atom is combined at the fcc site, and the N-N piece is desorbed from the surface and forms N2 molecules. The comparison of the density of states of InN (0001) surface before and after N2O adsorption is analyzed in detail. Through the searching for transition state of decomposition reaction, a very low energy barrier of 45.0 KJ/mol is derived.  相似文献   

10.
张福兰 《结构化学》2011,30(1):25-30
The density functional theory(DFT) and self-consistent periodic calculation were used to investigate the C2Hx(x = 4~6) species adsorption on the Fe(110) surface. The adsorption energy and equilibrium geometry of the species C2Hx(x = 4~6) on four possible sites(top,hcp,SB and LB) on the Fe(110) surface were predicted and compared. Mulliken charges and density of states analysis of the most stable site have been discussed. It is found that the species of C2H6 and C2H5 are adsorbed strongly on the Fe(110) surface with calculated adsorption energy of -80.24 and -178.89 kJ·mol-1 at the Fe-LB(long-bridge) ,respectively. However,the C2H4 is adsorbed strongly on the Fe(110) surface with calculated adsorption energies of -114.96 kJ·mol-1 at the top. The results indicate that the charge transferring process can be completed by chemisorption between Fe(110) surface and the species. Moreover,the chemical bands can be formed by chemisorptions between the Fe(110) surface and the species,too.  相似文献   

11.
甲醇在Au(111)表面吸附的密度泛函研究   总被引:2,自引:0,他引:2  
 采用基于第一性原理的密度泛函理论和周期平板模型相结合的方法,对CH3OH分子在Au(111)表面top, fcc, hcp和bridge位的吸附模型进行了构型优化、能量计算以及Mulliken布居分析,结果表明top位是较有利的吸附位. 吸附的CH3OH解离产生甲氧基CH3O和H, 对它们在Au(111)面的吸附进行的计算表明, bridge和fcc位分别是二者的最佳吸附位. 对过渡态的计算给出了CH3OH在Au表面解离吸附的可能机理: 首先发生 O-H 键的断裂,继而生成甲氧基中间体.  相似文献   

12.
《物理化学学报》1992,8(3):313-320
用高分辨电子能量损失谱(HREELS~*)对CH_3CN(乙腈)及C_6H_5CN(苯基氰)在清洁与氧覆盖的Cu(111)及Pd(100)表面上的吸附及其反应进行了研究。从198 K时CH_3CN吸附在Cu(111)及Pd(100)表面上的高分辨电子能量损失谱(HREELS)中观察到v(C≡N)几乎消失, 并在195 meV处出现一个较弱的v(C=N)谱带, 表明CH_3CN在吸附过程中C≡N再杂化为C=N,C,N原子分别与金属表面原子键合并C=N平行于表面。从198 K时C_6H_5CN在Pd(100)及Cu(111)上的HREELS表明C_6H_5CN的环平面与CN平行于金属表面。在185K时C_6H_5CN在氧覆盖的Pd(100)表面上的HREELS与其在清洁表面上的相似。并未观察到覆盖氧增强了C_6H_5CN在Pd(100)上的吸附及其它效应。C_6H_5CN吸附在氧覆盖的Cu(111)表面上产生了C_6H_5CNO的特征谱带。  相似文献   

13.
采用密度泛函理论(DFT)的B3LYP方法,以原子簇Rh13(9,4)为模拟表面,在6-31G(d,p)与Lanl2dz基组水平上,对甲氧基在Rh(111)表面的四种吸附位置(fcc、hcp、top、bridge)的吸附模型进行了几何优化、能量计算、Mulliken电荷布局分析以及前线轨道的计算。结果表明,当甲氧基通过氧与金属表面相互作用时,在bridge位的吸附能最大,吸附体系最稳定,在top位转移的电子数最多;吸附于Rh(111)面的过程中C—O键被活化,C—O键的振动频率发生红移。  相似文献   

14.
采用密度泛函理论(DFT)的B3LYP方法,以原子簇Ru15为模拟表面,对甲醇在理想的Ru(0001)面三种吸附位置(top,fcc,hcp)的吸附模型进行了几何构型优化,能量计算,Mu lliken布局分析以及振动频率计算,结果表明顶位为最有利的吸附位.这些变化与实验观察到的甲醇在过渡金属表面解离的结果相一致.同时通过对吸附过程的分析推测其可能的解离途径.  相似文献   

15.
采用广义梯度近似(GGA)密度泛函理论(DFT)的PW91方法结合周期性模型, 在DNP基组下, 利用Dmol3模块研究了CO和H2在真空和液体石蜡环境下在Cu(111)表面上不同位置的吸附. 计算结果表明, 溶剂化效应对H2和CO的吸附结构参数和吸附能的影响非常显著. 在液体石蜡环境下, H2平行吸附在Cu(111)表面是解离吸附, 而CO 和H2在两种环境下的垂直吸附都是非解离吸附. 相比真空环境吸附, 在液体石蜡环境中, Cu(111)吸附CO时, 溶剂化效应能够提高CO吸附的稳定性, 同时有利于CO的活化. 在真空中, H2只能以垂直方式或接近垂直方式吸附在Cu(111)表面. 当Cu(111)顶位垂直吸附H2, 相比真空环境吸附, 溶剂化效应能够提高H2吸附的稳定性, 但对H2的活化没有明显影响. Cu(111)表面的桥位或三重穴位(hcp和fcc)垂直吸附H2时, 溶剂化效应能明显提高H2的活化程度, 但降低H2的吸附稳定性; 在液体石蜡中, 当H2平行Cu(111)表面吸附时, 溶剂化效应使H—H键断裂, 一个H原子吸附在fcc位, 另一个吸附在hcp位.  相似文献   

16.
1INTRODUCTION Methoxy(CH3O)has been identified as the first intermediate in the decomposition of methanol on extensive list of clean transition metal surfaces,such as Ni(100)[1],Cu(100)[2,3],Cu(111)[4],Ag(111)[5],Au(110)[6],Pd(111)[7]and Ru(0001)[8].The electronic structure of the metal is a determining factor in OH bond scission.In fact,group IB clean surfaces have shown very low activity towards this reaction,al-though there are reports on low amounts of methoxy formed on clean Cu(…  相似文献   

17.
甲醇在Pt-Mo(111)/C表面上的吸附   总被引:1,自引:0,他引:1  
采用密度泛函理论和周期平板模型相结合的方法, 对CH3OH分子在Pt-Mo(111)/C表面的顶位、穴位和桥位共计9种吸附模型进行了构型优化、能量计算和频率分析, 结果表明top-Pt位是较有利的吸附位. Mo掺杂后价带与导带位置均有不同程度的降低, 电子结构的变化使得Pt-Mo(111)/C的催化活性提高. 并且在考虑催化剂抗中毒性能时发现: CO在Pt(111)/C面上的吸附能比甲醇吸附能要高, CO在Pt-Mo(111)/C上的吸附能比甲醇的要低, 说明CO在Pt(111)/C面上的吸附会阻碍甲醇的吸附, 并影响催化过程的进行, 而Pt-Mo(111)/C的抗CO中毒化能力增强, 是催化氧化甲醇较好的催化剂.  相似文献   

18.
甲醇在Pt-Fe(111)/C表面吸附的理论研究   总被引:1,自引:0,他引:1  
王译伟  李来才  田安民 《化学学报》2008,66(22):2457-2461
采用密度泛函理论和周期平板模型相结合的方法, 对CH3OH分子在Pt-Fe(111)/C表面top, fcc, hcp和bridge位的吸附模型进行了构型优化、能量计算, 结果表明bridge位是较有利的吸附位. 掺杂后费米能级的位置发生了右移, 价带和导带均增宽, 极利于电子-空穴的迁移, 这对提高催化活性是非常有利的. 考察抗中毒性发现: CO在Pt(111)/C面上的吸附能比甲醇吸附能要高, CO在Pt-Fe(111)/C的吸附能比甲醇吸附能要低, 可说明CO在Pt(111)/C面上有中毒效应, 而Pt-Fe(111)/C的抗CO中毒能力增强, 是催化氧化甲醇良好的催化剂.  相似文献   

19.
The chemisorption and decomposition of methanol on Ni(111) has been studied by high-resolution electron energy-loss spectroscopy. We isolate and identify a methoxy species (CH3O) which forms as a quasi-stable surface intermediate during the thermal decomposition of chemisorbed methanol. The methoxy species is bonded with the oxygen end nearest to the surface and the methyl group inclined at an oblique angle to the surface.  相似文献   

20.
Methanol adsorption on beta-Ga2O3 surface has been studied by Fourier transform infrared spectroscopy (FTIR) and by means of density functional theory (DFT) cluster model calculations. Adsorption sites of tetrahedral and octahedral gallium ions with different numbers of oxygen vacancies have been compared. The electronic properties of the adsorbed molecules have been monitored by computing adsorption energies, optimized geometry parameters, overlap populations, atomic charges, and vibrational frequencies. The gallia-methanol interaction has different behaviors according to the local surface chemical composition. The calculations show that methanol can react in three different ways with the gallia surface giving rise to a nondissociative adsorption, a dissociative adsorption, and an oxidative decomposition. The surface without oxygen vacancies is very reactive and produces the methanol molecule decomposition. The molecule is nondissociatively adsorbed by means of a hydrogen bond between the alcoholic hydrogen atom and a surface oxygen atom and a bond between the alcoholic oxygen atom and a surface gallium atom. Two neighbor oxygen vacancies on tetrahedral gallium sites produce the dissociation of the methanol molecule and the formation of a bridge bond between two surface gallium atoms and the methoxy group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号