首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new synthetic procedure has been developed for the preparation of ordered mesoporous silica monoliths doped with uniform PbS nanoparticles (NPs). Ordered mesoporous silica monoliths functionalized with thiol groups have been synthesized through co-condensation method in a lyotropic liquid crystalline system. Thiol groups on the interior wall facilitate the incorporation of Pb2+ cations and the formation of PbS NPs inside the ordered mesopores. Combined analysis results indicate that the PbS NPs with a uniform particle size of about 2.5 nm are mostly confined inside the ordered pores of hosts. A great blue shift in the absorbance spectrum has been observed, which shows an obvious quantum confinement effect.  相似文献   

2.
The porosity of monolithic silica columns is measured by using different analytical methods. Two sets of monoliths were prepared with a given mesopore diameter of 10 and 25 nm, respectively and with gradated macropore diameters between 1.8 and 7.5 microm. After preparing the two sets of monolithic silica columns with different macro- and mesopores the internal, external and total porosity of these columns are determined by inverse size-exclusion chromatography (ISEC) using polystyrene samples of narrow molecular size distribution and known average molecular weight. The ISEC data from the 4.6 mm analytical monolithic silica columns are used to determine the structural properties of monolithic silica capillaries (100 microm I.D.) prepared as a third set of samples. The ISEC results illustrate a multimodal mesopore structure (mesopores are pores with stagnant zones) of the monoliths. It is found by ISEC that the ratio of the different types of pores is dependent on the change in diameter of the macropores (serve as flow-through pores). The porosity data achieved from the mercury penetration measurement and nitrogen adsorption as well of scanning electron microscopy (SEM) and transmission electron microscopy (TEM) pictures are correlated with the results we calculated from the ISEC measurements. The ISEC results, namely the multimodal pore structure of the monoliths, reported in several publications, are not confirmed analyzing the pore structures of the different silica monoliths using all other analytical methods.  相似文献   

3.
Design of nanocatalysts for efficient heterogeneous catalytic systems is needed to high ingredients for environmental cleanup of organic pollutant species. Here, well-defined order NiO-silica monolithic catalysts with hexagonal P6mm and cubic Pm3n mesostructures were successfully fabricated by using an instant direct-templating method of lyotropic and microemulsion phases of Brij 76 (C18H37(OCH2CH2)10 OH, C18EO 10). Ordered hexagonal P6mm NiO/HOM-2 monoliths could be fabricated in lyotropic system of Brij 76 at phase composition domains of TMOS/Brij 76 (50 wt%). However, periodically ordered cubic Pm3n NiO-supported monoliths were synthesized in microemulsion system formed by addition of C12-alkane to the hexagonal phase domains. This synthetic strategy also revealed that the NiO particles were well-dispersed into the silicate pore surface matrices of mesostructures. Monolithic NiO-silica composites with 2D hexagonal and 3D cubic geometries and with large particle morphologies show promise to act as catalysts. The current study revealed evidence of the advantages of nanoscale pore geometry and shape, and particle morphology of the supported silica monoliths in the design of nanocatalysts that can efficiently enhance the catalytic functionality in terms of stability, reversibility and reactivity. Furthermore, a key finding in our study was that 2D hexagonal and 3D cubic mesostructured NiO-silica catalysts retained the specific activity towards the oxidation reaction even after several regeneration/reuse cycles. Significant study of the mechanistic cyclization of the organic reactant using the density functional (DFT) calculations provided evidence of the key components of conformations of the functional model during the formation of the oxidation product.  相似文献   

4.
Mesoporous alumina films with large‐sized cage‐type mesopores were prepared by using commercially available diblock copolymer (PS‐b‐PEO) and economic inorganic salt (AlCl3) as aluminum source. The obtained mesopore sizes drastically expand from 35 nm to 80 nm when the amount of ethanol in the precursor solutions were controlled. More interestingly, under an optimized amount of ethanol as co‐solvent, there was no significant change of micelle morphology on the substrate, even though the relative amount of PS‐b‐PEO to alumina source was dramatically varied. When the amount of alumina precursor was decreased, the pore walls gradually became thinner, thereby improving pore connectivity. The ordered mesoporous alumina films obtained in this study exhibit high thermal stability up to 1000 °C, and their frameworks are successfully crystallized to γ‐alumina phase. This technique could also be applicable for creating other metal oxide thin films with large mesopores.  相似文献   

5.
6.
Ultra-large-pore FDU-12 (ULP-FDU-12) silica with face-centered cubic structure (Fm3m type) of spherical mesopores was synthesized using Pluronic F127 triblock copolymer (EO(106)PO(70)EO(106)) and ethylbenzene as a new micelle expander at initial temperature of 14 °C. Ethylbenzene was identified on the basis of its reported extent of solubilization in poly(ethylene oxide)-poly(propylene oxide)-type surfactant micelles, which was similar to that of xylene, the latter having been shown earlier to afford ULP-FDU-12. The unit-cell parameter of as-synthesized ULP-FDU-12 was 55 nm, which is similar to the highest value reported when xylenes (mixture of isomers) were used and larger than that achieved with trimethylbenzene. The unit-cell parameter of calcined ULP-FDU-12 reached 52 nm. For the obtained materials, the nominal pore cage diameter calculated from nitrogen adsorption reached 32 nm, whereas the actual pore cage diameter calculated using the geometrical relation was 36 nm. The pore entrance size was below 5 nm before the acid treatment, but was greatly enlarged as a result of the treatment. The sample prepared without hydrothermal treatment was converted to ordered closed-pore silica at as low as 400-450 °C. Our study confirms the ability to select micelle expanders on the basis of data on solubilization of compounds in micelle solutions.  相似文献   

7.
A mesoporous solid with crystalline walls and an ordered pore structure exhibiting a bimodal pore size distribution (3.3 and 11 nm diameter pores) has been synthesized. Previous attempts to synthesize solids with large ordered mesopores by hard templating focused on the preparation of templates with thick walls (the thick walls become the pores in the target materials), something that has proved difficult to achieve. Here the large pores (11 nm) do not depend on the synthesis of a template with thick walls but instead on controlling the microporous bridging between the two sets of mesopores in the KIT-6 template. Such control determines the relative proportion of the two pore sizes. The wall thickness of the 3D cubic NiO mesopore has also been varied. Preliminary magnetic characterization indicates the freezing of uncompensated moments or blocking of superparamagnetism.  相似文献   

8.

The influence of different acids, such as hydrochloric acid, sulfuric acid, nitric acid, hydrobromic acid and acetic acid on the polymerization-induced phase separation process in the formation of hierarchically organized silica monoliths was investigated in detail. Special emphasis is given to systems synthesized from tetrakis(2-hydroxyethoxy)silane (EGMS) or tetramethoxysilane (TMOS) as the silica source in the presence of Pluronic® P123 serving as structure-directing agent. The obtained silica monoliths exhibited a co-continuous and cellular macroporous structure comprising 2D hexagonally arranged mesopores with high specific surface areas ranging from 320–787 m2 g?1 independent of the applied silane precursor and regardless whether hydrochloric acid or sulfuric acid was used. A drastic change in macropore morphology to closed pores or particulate structures was observed for nitric, bromic as well as acetic acid. For sulfuric and nitric acid, the influence on the mesostructure was not as pronounced and 2D hexagonally arranged mesopores were obtained. With bromic and acetic acid a loss in mesopore ordering has been observed. Best developed hierarchically organized networks with respect to a co-continuous, cellular macroporous network, specific surface area and 2D hexagonally arranged mesopores were obtained for EGMS as well as for TMOS with P123 in sulfuric acid.

  相似文献   

9.
Conditions for the synthesis of aluminum organophosphonate (AOP) and aluminophosphate (AlPO) spheres containing periodic mesopores were optimized and demonstrated to be general morphological controls for the surfactant‐assisted synthesis of mesoporous materials. High‐quality AOP and AlPO spheres with uniform mesopores were obtained at low and high temperatures, respectively. The aerosol‐assisted synthesis of materials with uniform mesopores was categorized by using the difference in relative density of soluble AOP and AlPO oligomers that interact with ethylene oxide (EO) units in EOnPOmEOn triblock copolymer (PO=propylene oxide). Then, ordered mesoporous structures are constructed with the adequate amount of species in resultant frameworks, and the number of interactive points in soluble species determines the resultant density of the frameworks after self‐assembly. Consequently, temperature‐dependent synthesis, which allows controlled infiltration of soluble species to match the density of resultant frameworks, is required for the formation of ordered mesoporous structures under morphological control.  相似文献   

10.
Ordered mesoporous silicas (OMSs) were prepared at different temperatures by using tetraethyl orthosilicate (TEOS) as a silica source, poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer (Pluronic F127) as a structure directing agent and sodium chloride as an additive under acidic conditions and microwave irradiation. The small angle X-ray diffraction patterns of these samples indicate the presence of ordered mesopores, while adsorption studies show that they possess high volumes of pores, bimodal pore size distributions and large pore sizes. There is an interesting change in the hysteresis loop of nitrogen adsorption isotherms with increasing temperature of hydrothermal treatment; a delayed desorption characteristic for cage-like mesostructures is observed for the OMS samples treated at 100 and 120?°C, while the hydrothermal treatment at 140 and 160?°C leads to the samples having hysteresis loops characteristic for channel-like materials.  相似文献   

11.
Silica-based monoliths with co-continuous structure were successfully prepared through a sol–gel process in the presence of a poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (F68). The triblock copolymer was compared to the classical PEG, in the formation of silica monoliths and was demonstrated to lead to co-continuous structures in a wider composition range, presenting smaller through pores. Moreover, mesoporous structures templated at the sol–gel transition were assumed to occur at the surface of the silica skeleton while PEG exhibited no mesopore templating.  相似文献   

12.
Exceptional control of the phase behavior of highly ordered large pore mesostructured silica (with the choice of Fm3m, Im3m or p6mm symmetry) is achieved using a triblock copolymer (EO(106)PO(70)EO(106)) and butanol at low acid concentrations.  相似文献   

13.
Native and n-alkyl-bonded (n-octadecyl) monolithic silica rods with mesopores in the range between 10 and 25 nm and macropores in the range between 1.8 and 6.0 microm were examined by mercury intrusion/extrusion, inverse size exclusion chromatography (ISEC) and nitrogen sorption. Our results reveal very good agreement for the mesopore size distribution obtained from nitrogen adsorption (in combination with an advanced NLDFT analysis) and ISEC. Our studies highlight the importance of mercury porosimetry for the assessment of the macropore size distribution and show that mercury porosimetry is the only method which allows obtaining a combined and comprehensive structural characterization of macroporous/mesoporous silica monoliths. Our data clearly confirm that mercury porosimetry hysteresis and entrapment have different origin, and indicate the intrinsic nature of mercury porosimetry hysteresis in these silica monoliths. Within this context some silica monoliths show the remarkable result of no entrapment of mercury after extrusion from the mesopore system (i.e. for the first intrusion/extrusion cycle). The results of a systematic study of the mercury intrusion/extrusion behavior into native silica monoliths and monoliths with bonded n-alkyl groups reveals that the macro (through) pore structure, which controls the mass transfer to and from the mesopores, here mainly controls the entrapment behavior. Our data suggest that mercury intrusion/extrusion porosimetry does not only allow to obtain a comprehensive pore structure analysis, but can also serve as a tool to estimate the mass transport properties of silica monoliths to be employed in liquid-phase separation processes.  相似文献   

14.
Highly ordered SBA-16-type mesoporous silica materials were synthesized by using poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) triblock copolymer (EO(132)-PO(50)-EO(132), Pluronic F108) as template through a two-step pathway under mildly acidic conditions (pH 2.15-4.50). The highly ordered cage-like mesoporosity of the prepared SBA-16-type mesoporous silica materials having Im3m cubic mesostructure was proved by the well-defined X-ray diffraction patterns combined with transmission electron microscopy. Scanning electron microscopy shows a variation from the spherical agglomerations to the randomly shaped ones with an increase of pH value. The nitrogen adsorption-desorption analysis reveals that the prepared SBA-16-type mesoporous silica materials have a uniform small-sized pore diameter (3.37-4.24 nm) and very thick pore wall (8.84-10.2 nm). These features may make the SBA-16-type mesoporous silica materials synthesized in this study favor the incorporation of catalytically active heteroatoms in silica frameworks, and the functionalization of organic groups for applications in catalysis, sensor and separation. The two-step synthetic method under the mildly acidic conditions can also be extended to the production in the industrial scale as an environmentally friendly way.  相似文献   

15.
Growing public awareness on the potential risk to humans of toxic chemicals in the environment has generated demand for new and improved methods for toxicity assessment and removal, rational means for health risk estimation. With the aim of controlling nanoscale adsorbents for functionality in molecular sieving of organic pollutants, we fabricated cubic Im3m mesocages with uniform entrance and large cavity pores of aluminosilicates as highly promising candidates for the colorimetric monitoring of organic dyes in an aqueous solution. However, a feasible control over engineering of three-dimensional (3D) mesopore cage structures with uniform entrance (~5 nm) and large cavity (~10 nm) allowed the development of nanoadsorbent membranes as a powerful tool for large-quantity and high-speed (in minutes) adsorption/removal of bulk molecules such as organic dyes. Incorporation of high aluminum contents (Si/Al=1) into 3D cubic Im3m cage mesoporous silica monoliths resulted in small, easy-to-use optical adsorbent strips. In such adsorption systems, natural surfaces of active acid sites of aluminosilicate strips strongly induced both physical adsorption of chemically responsive dyes and intraparticle diffusion into cubic Im3m mesocage monoliths. Results likewise indicated that although aluminosilicate strips with low Si/Al ratios exhibit distortion in pore ordering and decrease in surface area and pore volume, enhancement of both molecular converges and intraparticle diffusion onto the network surfaces and into the pore architectures of adsorbent membranes was achieved. Moreover, 3D mesopore cage adsorbents are reversible, offering potential for multiple adsorption assays.  相似文献   

16.
Micropatterning has important applications in a wide range of areas, including microelectronics, optics, information displays, and biotechnology. Herein, we describe a vesicle-array templating approach for the generation of surface patterns of micrometer-sized silica features on the surfaces of silica monoliths. The approach makes use of tetraethyl orthosilicate as silica precursor, a poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) triblock copolymer, EO2PO16EO2, as surfactants, and water, ethanol, and dimethylformamide as solvents. The morphological shapes of produced silica features are synthetically controlled through varying the sequence of silica precursor hydrolysis, vesicle formation, and silica condensation. Prehydrolysis of the silica precursor, before being mixed with the copolymer, gives hollow convex protrusions. Direct mixing of the silica precursor and the copolymer produces concave depressions. An increase in the amount of water in the mixture solution without prehydrolysis of the silica precursor results in hierarchical patterns of larger concave depressions attached with smaller convex protrusions. It has further been demonstrated that concave surface patterns can function as microlens arrays that are capable of producing numerous optical images from a common object.  相似文献   

17.
Monolithic pieces of hierarchically structured silica, containing both periodic macropores and mesopores with well-controlled architecture, are synthesized by dual templating methods. Colloidal crystal templating with close-packed arrays of poly(methyl methacrylate) spheres yields regular, highly interconnected macropores a few hundred nanometers in diameter, and templating with nonionic surfactants produces mesoporosity (2.5-5.1 nm pore diameters) in the macropore walls. Several distinct mesostructures can be achieved within the silica skeleton, depending on the choice of surfactant, co-surfactant, and processing conditions. In the three-dimensional (3D) confinement of the colloidal crystal template, wormlike channels, cubic (Pm3n), or two-dimensional (2D) hexagonal (P6mm) mesostructures are produced with the surfactant Brij 56 (C16H33(OCH2CH2)nOH (n approximately 10) and dodecane as cosurfactant. In the 2D hexagonal structure, channels are oriented perpendicular to the polymer spheres, thereby connecting adjacent macropores through the silica walls. This orientation contrasts with channel alignment parallel to latex spheres when the polymeric surfactant Pluronic P123 (EO20PO70EO20) is used. On the basis of high-resolution 3D transmission electron microscopy, scanning electron microscopy, small-angle X-ray scattering, and nitrogen sorption measurements, structural and textural properties of the monoliths are described in detail as a function of the synthesis parameters. The control over the mesoarchitecture of these silica-surfactant systems in 3D confinement is explained by considering the relative dimensions of the mesostructures with respect to the interstitial space in the latex template, interfacial interactions, entropic effects, and structural frustration.  相似文献   

18.
Highly ordered mesoporous carbons and silicas with ultralarge accessible pores have been successfully synthesized by using laboratory-made poly(ethylene oxide)-b-polystyrene (PEO-b-PS) diblock copolymers as templates via the evaporation-induced self-assembly (EISA) approach. Resols and tetraethyl orthosilicate (TEOS) serve as carbon and silica precursors, respectively. Small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM) measurements show that the mesoporous carbons (denoted as C-FDU-18) possess face centered cubic closed-packing (fcc) mesostructure (Fm3m) with large-domain ordering. N2 sorption isotherms reveal a large mesopore at the mean value of 22.6 nm with a narrow pore-size distribution. Mesoporous silicas (Si-FDU-18) also display a highly ordered fcc closed-packing mesostructure with an ultralarge unit cell (a = 54.6 nm). A hydrothermal recrystallization was introduced for the first time to produce micropores in thick silica walls (approximately 7.7 nm) and thus to generate ultralarge accessible mesopores (30.8 nm). Notably, the amphiphilic diblock copolymer with high molecular weight (PEO125-PS230, 29700 g mol-1) in this report was prepared via a simple method of atom transfer radical polymerization (ATRP). It can be easily available for chemists even without any experience in polymer synthesis.  相似文献   

19.
Highly ordered mesoporous polymer-silica and carbon-silica nanocomposites with interpenetrating networks have been successfully synthesized by the evaporation-induced triconstituent co-assembly method, wherein soluble resol polymer is used as an organic precursor, prehydrolyzed TEOS is used as an inorganic precursor, and triblock copolymer F127 is used as a template. It is proposed for the first time that ordered mesoporous nanocomposites have "reinforced concrete"-structured frameworks. By adjusting the initial mass ratios of TEOS to resol, we determined the obtained nanocomposites possess continuous composition with the ratios ranging from zero to infinity for the two constituents that are "homogeneously" dispersed inside the pore walls. The presence of silicates in nanocomposites dramatically inhibits framework shrinkage during the calcination, resulting in highly ordered large-pore mesoporous carbon-silica nanocomposites. Combustion in air or etching in HF solution can remove carbon or silica from the carbon-silica nanocomposites and yield ordered mesoporous pure silica or carbon frameworks. The process generates plenty of small pores in carbon or/and silica pore walls. Ordered mesoporous carbons can then be obtained with large pore sizes of approximately 6.7 nm, pore volumes of approximately 2.0 cm(3)/g, and high surface areas of approximately 2470 m(2)/g. The pore structures and textures can be controlled by varying the sizes and polymerization degrees of two constituent precursors. Accordingly, by simply tuning the aging time of TEOS, ordered mesoporous carbons with evident bimodal pores at 2.6 and 5.8 nm can be synthesized.  相似文献   

20.
以聚甲基丙烯酸甲酯(PMMA)胶晶为大孔模板、嵌段共聚物P123为介孔模板,利用双模板剂法进行了三维有序大孔-介孔二氧化硅材料的制备研究。采用SEM、TEM、低角XRD以及N2吸脱附技术对样品进行了表征。结果表明,通过简单的调控PMMA胶晶模板的组装过程,就可以调变合成材料中的大孔结构,从而轻松地实现可控的制备出具有网状或者层状结构的三维有序大孔-介孔二氧化硅材料,并提出了其可能的形成机理。此外,所制备的三维有序大孔-介孔二氧化硅样品均具有较大的BET比表面积(>550m2·g-1),大孔孔径200nm左右,介孔孔径分布集中于3.5nm左右。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号