首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N1923从碱性氰化液中萃取金(Ⅰ)的研究   总被引:6,自引:0,他引:6  
采用放射性同位素198Au示踪法研究了伯胺N1923和TBP从碱性氰化液中萃取金(Ⅰ),考察了酸化率、水相pH值、萃取剂浓度等对萃取率的影响,以及NaOH对载金有机相的反萃作用。结果表明,TBP含量大于20%,酸化的N1923与KAu(CN)2摩尔比值在11时,金能够完全被萃取。载金有机相可采用0.1mol·L-1的NaOH溶液定量反萃。机理研究表明,伯胺和TBP萃取Au(CN)2-,符合BC类协同萃取机理。当金浓度大于10g·L-1时,在萃取有机相中形成纳米级的聚集体。  相似文献   

2.
萃取法去除硫酸氧钛液中杂质铁   总被引:2,自引:0,他引:2  
王美琴  徐卡秋  叶静 《应用化学》2010,27(12):1462-1465
采用溶剂萃取法有效去除了钛白粉制备过程中的中间产物硫酸氧钛液中大量的杂质铁。 将硫酸氧钛液中的Fe2+氧化成Fe3+后,用磷酸三丁酯(TBP)和煤油混合体系萃取除去Fe3+。 考察了氧化剂、稀释剂、有机相中TBP体积分数、萃取相比、NaCl加入量等对铁萃取率的影响以及反萃条件的选择和萃取剂的循环使用效果,结果表明,用煤油作稀释剂,TBP在有机相的体积分数为60%,萃取相比O/W为2∶1时,NaCl加入量以Cl-计4 mol/L,Fe3+的3次萃取率可达99%,钛的损失率低至0.4%。当反萃相比W/O为1∶1时,Fe3+的3次反萃率可达100%。TBP经过5次萃取-反萃循环使用后,对Fe3+的萃取率无明显下降,可循环使用。  相似文献   

3.
用常温下呈固态的有机物质(如萘、石蜡等)加热熔成液态,与有机萃取剂组成均匀有机相,对水相中金属离子进行萃取,冷却后,有机相呈固态析出而与萃余水相分离。本文将这种萃取分离方法命名为固-液萃取分离。对固-液萃取分离研究,已有报导使用萘、二苯甲酮、联苯等做溶剂。本文提出的石蜡溶剂较之性能良好,以石蜡作溶剂的固-液萃取是有助于克服液-液萃取的某些缺陷  相似文献   

4.
本法拟定了在还原剂三氯化钛存在下,于6N氢溴酸介质中,用甲苯-甲基异丁基酮混合溶剂同时定量萃取镓和铟。然后用6N盐酸反萃取铟后,用极谱法测定;留在有机相中的镓,用罗丹明B分光光度法直接显色测定。这就可以在同一份称样中分别测定镓和铟。在拟定条件下,所取试样中分别存在下述离子(毫克):铅、锌、铁、镍、铋、锑(100),铜、钻、锡、砷(50),钼(30),镉(25),钨(10),钒(5),金、铊(0.1)不影响测定。方法简便、快速、准确度和精密度较高,适用于铅锌矿、黄铁矿、银铜矿和烟灰等物料中  相似文献   

5.
萃取有机相的微结构和性质的研究   总被引:4,自引:0,他引:4  
本文用FTIR, 荧光, ICP/AES等方法研究了含稀土的HDEHP[二(2-乙基己基)磷酸, HA]-正庚烷的萃取有机相的结构和聚集态。结果表明: (1)不同稀土离子与萃取剂的配位能力不一样, La相似文献   

6.
因铁离子具有强烈的水解倾向及易与其他离子形成配合物的性质,在溶剂萃取体系中的存在形式极为复杂。在稀土萃取体系中,采用P204或N235除铁,经盐酸反萃后,有机相中铁的反萃率较低,不能深度除去,影响萃取剂的萃取性能。而在P507-N235盐酸萃取体系中,Fe3+在低酸度下可被P507萃取,在高酸度下形成Fe Cl-4配合物被N235萃取,萃取率达99%以上,且难被反萃下来。研究采用草酸和EDTA络合法除去有机相中的铁,结果表明:草酸络合法除铁率较低,较难用草酸络合法将有机相中的铁反萃下来;在温度25℃、反萃时间14 min,相比1∶1的条件下,用EDTA络合法除铁,铁的反萃率可达97.51%,经4次错流反萃后,可将有机相中铁的浓度降至0.002 g·L-1,达到深度除铁的目的。  相似文献   

7.
针对太平洋中部深海粘土HCl浸出液酸度高、成分复杂等特点,克服现有萃取剂不足,采用新型萃取剂P535从高浓度HCl浸出液中直接萃取回收Y~(3+),考察料液酸度、萃取剂浓度、萃取时间和相比对萃取的影响以及HCl,H2SO4反萃剂对反萃的影响,分别绘制萃取平衡等温线和反萃平衡等温线,确定反萃方案并完成转型。结果表明:以有机相组成为10%P535(质量分数)+磺化煤油作为萃取剂,料液酸度为1.12 mol·L-1HCl,其最佳萃取条件为:萃取时间5 min,相比O/A=1∶2。经过3级逆流萃取,Y~(3+)萃取率达到98%,Fe~(3+)共萃进入有机相,其他金属基本不萃取。负载有机相用2 mol·L-1的H2SO4溶液可选择性反萃Y~(3+),得到Y_2(SO_4)_3溶液,反萃Y~(3+)的有机相再用8 mol·L-1HCl溶液反萃共萃的Fe~(3+),完成转型。  相似文献   

8.
酸法浸出石煤提钒因具有环保、金属收率高的特点而备受关注,但同时进入母液的铁(高含量的Fe3+)严重影响了钒的富集和产品生产。 对此,本文提出一种基于“抑制-萃取”效应的钒/铁分离混合萃取体系(P507(2-乙基己基磷酸-单2-乙基己基酯)+ N235(三辛/癸烷基叔胺)+磺化煤油),并详细研究了各因素对钒铁分离和钒富集的影响规律。 结果表明,P507是钒铁萃取的主体,N235不具萃Fe3+能力,是产生抑制铁萃取的关键因素,其浓度越高铁萃取率越低;对于酸度较高(pH≤0.4)的原料液钒/铁的分离效果仍较好,这表明了该“抑制-萃取”混合萃取体系对高酸度浸出液钒/铁分离的适用性。 采用氨水从负载有机相中反萃取钒铁,当氨水浓度为6 mol/L时钒的反萃率99%以上,25 ℃,V(有机相)∶V(水相)=2∶1时的反萃液中钒质量浓度14.73 g/L,铁质量浓度小于0.022 g/L,m(V)/m(Fe)=669.5。 该“抑制-萃取”法分离钒/铁操作简单、经济高效,极具工业化前景。  相似文献   

9.
采用简单的反萃取法回收二壬基萘磺酸-磺化煤油溶液中的镁。考察了反萃剂种类、反萃时间、反萃转速、反萃剂浓度、反萃相比(有机相与水相的体积比)O/A值对反萃取率的影响。研究结果表明:在常温下,以硫酸作反萃取剂,反萃剂浓度为4 mol·L-1,反萃时间为20 min,反萃取震荡转速为200 rpm,反萃相比O/A值为5时,镁的反萃率可达93.98%,经过反萃后得到的二壬基萘磺酸-磺化煤油溶液可以重复萃取冶金废水的镁离子,镁的萃取率保持不变。这一研究结果对于冶金行业废水的处理与综合利用具有重要参考价值。  相似文献   

10.
关于季铵盐从碳酸钠溶液中萃取铀的反应,前人均确认为: UO_2(CO_3)_3~(4-)+4R_4NCl(?)(R_4N)_4UO_2(CO_3)_3+4Cl~-萃合物中铀与季铵的摩尔比为1:4,含0.1M季铵盐的有机相萃取铀的理论饱和容量为5.95g/L。在铀矿水冶碱法工艺中,我们以季铵盐从碳酸钠溶液中萃取铀,用碳酸铵溶液从饱和有机相中反萃铀,再用季铵盐从蒸除氨后的碳酸铵反萃结晶母液中萃取铀时发现,0.1M季铵盐萃取铀可高达60~90g/L,为按上述反应计算的理论饱和容量的10~15倍,萃取分配比大于10~4,单段萃取即可使萃余水相中铀浓度小于5mg/L。因此推测萃取过程是按另一反应进行。季铵盐不是萃取三碳酸钠酰配阴离子,而是萃取一种或几种铀酰离子的水解产物——多铀酸盐。  相似文献   

11.
离子吸附型稀土浸出液中共存杂质铝的含量随矿床产地和浸取条件而变化,其浓度有时与稀土属于同一数量级,而铝对稀土的分离纯化过程影响严重。因此,稀土与铝的分离具有重要意义。本文研究了伯胺N_(1923)萃取分离稀土与铝的性能,结果表明:N_(1923)-煤油-异辛醇有机相可以从离子吸附型稀土浸出液中直接萃取稀土,而铝及其他低价金属离子留在水相;其分离系数可以达到10~5。少量进入有机相的铝继续用(NH_4)_2SO_4溶液反洗(O/A=1∶1),使负载有机相中稀土与铝的比值大大增加,其分离系数随(NH_4)_2SO_4浓度的升高和溶液pH的下降而增大。确定的最佳浓度和pH分别为2%和1。有机相中的稀土经3 mol·L~(-1) NH_4Cl溶液反萃(O/A=2∶1),可以得到浓度大纯度高的稀土溶液;采用c_(Al)/c_(RE)=8.443的含铝稀土浸出液,经萃取、洗涤和反萃,可以得到浓度为4.3~13.34 g·L~(-1)的c_(Al)/c_(RE)=0.0023~0.0027的稀土溶液,稀土回收率大于96%。  相似文献   

12.
采用放射性同位素198Au示踪法研究了伯胺N1923和TBP从碱性氰化液中萃取金(Ⅰ),考察了酸化率、水相pH值、萃取剂浓度等对萃取率的影响,以及NaOH对载金有机相的反萃作用。结果表明,TBP含量大于20%,酸化的N1923与KAu(CN)2摩尔比值在1:1时,金能够完全被萃取。载金有机相可采用0.lmol·L-1的Na0H溶液定量反萃。机理研究表明,伯胺和TBP萃取Au(CN)2-,符合BC类协同萃取机理。当金浓度大于10g·L-1时,在萃取有机相中形成纳米级的聚集体。  相似文献   

13.
研究了TBP(磷酸三丁酯)对盐酸的萃取和反萃性能。萃取过程研究和红外光谱分析结果表明:盐酸以TBP·HCl的形式进入有机相,萃取速度很快,一分钟达萃取平衡。盐酸萃取率随萃取剂浓度的增加而增加,而对钙、镁、铝无萃取性能,可实现含钛原料酸浸液中盐酸的萃取分离。以水为反萃剂,可有效反萃萃取液中的盐酸。模拟逆流萃取,绘制了以100%TBP为萃取剂,对6 mol·L~(-1)盐酸进行萃取的萃取-反萃等温线。  相似文献   

14.
酸性磷萃取剂在皂化过程中的结构变化与萃合物的组成   总被引:15,自引:1,他引:14  
本文研究了酸性磷酸酯(D2EHPA等)皂化过程和萃取前后有机相结构的变化,证实了酸性磷酸酯萃取剂在皂化过程中生成微乳状液,进一步阐明萃取稀土离子时,在微乳状液的油水界面上发生离子交换反应,生成具有螫合型结构的萃合物,同时伴随着有机相中微乳状液的破乳过程。在用完全皂化的D2EHPA-仲辛醇-煤油溶液萃取二价离子时,得到萃取有机相中苹合物的组成为MA2,而不是通常认为的MA2·2HA,从而可以提高萃取容量。  相似文献   

15.
对负载铁的P204[二(2-乙基己基)磷酸]-Nspa磺化煤油溶液中铁的反萃过程进行了研究。考察了反萃剂种类、反萃剂浓度、反萃时间、反萃温度、反萃转速和反萃相比O/A(有机相与水相的体积比)等对铁的反萃率的影响。结果表明:以14 mol/L磷酸为反萃剂,反萃时间为50 min,反萃温度为303 K,反萃转速为200rpm,反萃相比O/A为1∶1时,铁的反萃率可达85.56%。反萃后得到的萃取剂仍具有较优的萃取性能,可循环利用。  相似文献   

16.
采用2-乙基己基膦酸单-2-乙基己基酯(HEHEHP)-正庚烷为萃取剂,盐酸为反萃取剂,中空纤维膜作支撑膜,研究中空纤维分散液膜技术富集稀土镱(Yb~(3+))离子。考察了体系物性:反萃分散相中反萃剂浓度、萃取剂浓度、萃取剂与反萃剂体积比、料液相p H值、稀土离子浓度;流体流动状态:反萃分散相与料液相流速变化等因素对富集稀土离子的影响。中空纤维分散液膜富集Yb~(3+)的最佳条件为:萃取剂浓度为0.25 mol/L,反萃取剂HCl浓度为4.00 mol/L,萃取剂与反萃剂体积比为10∶40,料液相p H=2.80,稀土离子浓度为0.025 mol/L。反萃分散相体积流量和料液相体积流量较小时,萃取率随流量的增加呈现逐渐增大的趋势。若两相体积流量过大,反萃过程进行不完全,萃取率反而下降。研究结果表明,中空纤维分散液膜技术可实现稀土离子的有效富集。  相似文献   

17.
本工作研究了二甲庚基乙酰胺(N503)自盐酸溶液中萃取铟的性能,得出其萃取能力随着酸度的增加而增加。经斜率法和化学分析法确定,N503自盐酸溶液中萃取铟的反应为: 萃合物中的溶剂化数n随酸度而变化。IR和NMR研究证明,铟是以HInCl4形式被N503萃入有机相的。在盐酸体系中(HCl<2N),N503对镓、铟、铊的萃取顺序为:Tl(Ⅲ)>Ga(Ⅲ)>In(Ⅲ)  相似文献   

18.
二(2-乙基己基)磷酸从含氟稀土硫酸溶液中萃取铈的机制   总被引:1,自引:0,他引:1  
研究了二 ( 2 乙基己基 )磷酸 (DEHPA) 磺化煤油体系从氟碳铈矿氧化焙烧 硫酸浸出液中萃取Ce4 的机制 ,发现水相中F- 和Ce4 同时被萃入有机相 ,通过斜率法和研究平衡有机相中cF- cCd4 和初始水相酸度、初始水相氟离子浓度、有机相浓度之间的关系 ,推测出F- 和Ce4 以CeF2 A2 形式被DEHPA萃入有机相。  相似文献   

19.
本文提出一种十分快速简便的两相pH滴定法,研究HDEHP萃取Cu~( )、Co~( )、Ni~( )机理。此法在两相平衡时,只要测定水相的pH,通过预先假定的有机相萃合物的形式及种类,确定数学计算式,用实验数据验算萃合常数,来证实设想的反应机理的合理性。它比常用的研究络合物的溶剂萃取法省略了测定两相金属离子浓度这一步骤,但也带来了本法的局限性。本文提出在金属离子Cu~( )、Co~( )、Ni~( )不发生水解、聚合、有机相只存在一种萃合物MA_2·2HA情况下,研究萃取机理的数学假定及实验方法。实验确定HDEHP萃取Cu~( )、Co~( )、Ni~( )时,萃合常数1gβ_(Gu)=11.58;1gβ_c。=10.63:1gβ_(Ni)=8.97。  相似文献   

20.
二(2—乙基己基)单硫代磷酸萃取铟的研究   总被引:2,自引:1,他引:2  
目前采用二(2-乙基己基)磷酸(D2EHPA)从硫酸溶液中萃取铟在生产上虽获得广泛应用,但反萃取又转入盐酸体系,腐蚀刺激性较强.改用D2EHMTPA萃取铟可能较好,有关这方面的研究至今尚未见报道,本文从硫酸溶液中考察了D2EHMTPA萃取铟的性能,并与D2-EHPA和二(2-乙基己基)二硫代磷酸(D2EHDTPA)作比较,以了解这类萃取剂结构上的差别对萃取铟的影响,这对选择及合成高效能萃取剂分子也是有意义的,还应用斜率法、饱和法确定了萃取平衡反应及萃合物组成,根据IR与NMR探讨了D2EHMTPA萃取铟的机理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号