首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we prove some congruences conjectured by Z.-W. Sun: For any prime \(p>3\), we determine
$$\begin{aligned} \sum \limits _{k = 0}^{p - 1} {\frac{{{C_k}C_k^{(2)}}}{{{{27}^k}}}} \quad {\text { and }}\quad \sum \limits _{k = 1}^{p - 1} {\frac{{\left( {\begin{array}{l} {2k} \\ {k - 1} \\ \end{array}} \right) \left( { \begin{array}{l} {3k} \\ {k - 1} \\ \end{array} } \right) }}{{{{27}^k}}}} \end{aligned}$$
modulo \(p^2\), where \(C_k=\frac{1}{k+1}\left( {\begin{array}{c}2k\\ k\end{array}}\right) \) is the k-th Catalan number and \(C_k^{(2)}=\frac{1}{2k+1}\left( {\begin{array}{c}3k\\ k\end{array}}\right) \) is the second-order Catalan numbers of the first kind. And we prove that
$$\begin{aligned} \sum _{k=1}^{p-1}\frac{D_k}{k}\equiv -q_p(2)+pq_p(2)^2\pmod {p^2}, \end{aligned}$$
where \(D_n=\sum _{k=0}^{n}\left( {\begin{array}{c}n\\ k\end{array}}\right) \left( {\begin{array}{c}n+k\\ k\end{array}}\right) \) is the n-th Delannoy number and \(q_p(2)=(2^{{p-1}}-1)/p\) is the Fermat quotient.
  相似文献   

2.
Let \(\mu \) and \(\nu \) be measures supported on \(\left( -1,1\right) \) with corresponding orthonormal polynomials \(\left\{ p_{n}^{\mu }\right\} \) and \( \left\{ p_{n}^{\nu }\right\} \), respectively. Define the mixed kernel
$$\begin{aligned} K_{n}^{{\mu },\nu }\left( x,y\right) =\sum _{j=0}^{n-1}p_{j}^{\mu }\left( x\right) p_{j}^{\nu }\left( y\right) . \end{aligned}$$
We establish scaling limits such as
$$\begin{aligned}&\lim _{n\rightarrow \infty }\frac{\pi \sqrt{1-\xi ^{2}}\sqrt{\mu ^{\prime }\left( \xi \right) \nu ^{\prime }\left( \xi \right) }}{n}K_{n}^{\mu ,\nu }\left( \xi +\frac{a\pi \sqrt{1-\xi ^{2}}}{n},\xi +\frac{b\pi \sqrt{1-\xi ^{2}}}{n}\right) \\&\quad =S\left( \frac{\pi \left( a-b\right) }{2}\right) \cos \left( \frac{\pi \left( a-b\right) }{2}+B\left( \xi \right) \right) , \end{aligned}$$
where \(S\left( t\right) =\frac{\sin t}{t}\) is the sinc kernel, and \(B\left( \xi \right) \) depends on \({\mu },\nu \) and \(\xi \). This reduces to the classical universality limit in the bulk when \(\mu =\nu \). We deduce applications to the zero distribution of \(K_{n}^{{\mu },\nu }\), and asymptotics for its derivatives.
  相似文献   

3.
In this paper, we improve the previous results of the authors [G. Lü and H. Tang, On some results of Hua in short intervals, Lith. Math. J., 50(1):54–70, 2010] by proving that each sufficiently large integer N satisfying some congruence conditions can be written as
$ \left\{ {\begin{array}{*{20}{c}} {N = p_1^2 + p_2^2 + p_3^2 + p_4^2 + {p^k},} \hfill \\ {\left| {{p_j} - \sqrt {{\frac{N}{5}}} } \right| \leqslant U,\quad \left| {p - {{\left( {\frac{N}{5}} \right)}^{\frac{1}{k}}}} \right| \leqslant U\,{N^{ - \frac{1}{2} + \frac{1}{k}}},\quad j = 1,\,2,\,\,3,\,4,} \hfill \\ \end{array} } \right. $
where U = N 1/2?η+ε with \( \eta = \frac{1}{{2k\left( {{K^2} + 1} \right)}} \) and K = 2k ?1, k ? 2.
  相似文献   

4.
The purpose of this paper is threefold. First, we prove sharp singular affine Moser–Trudinger inequalities on both bounded and unbounded domains in \({\mathbb {R}}^{n}\). In particular, we will prove the following much sharper affine Moser–Trudinger inequality in the spirit of Lions (Rev Mat Iberoamericana 1(2):45–121, 1985) (see our Theorem 1.4): Let \(\alpha _{n}=n\left( \frac{n\pi ^{\frac{n}{2}}}{\Gamma (\frac{n}{2}+1)}\right) ^{\frac{1}{n-1}}\), \(0\le \beta <n\) and \(\tau >0\). Then there exists a constant \(C=C\left( n,\beta \right) >0\) such that for all \(0\le \alpha \le \left( 1-\frac{\beta }{n}\right) \alpha _{n}\) and \(u\in C_{0}^{\infty }\left( {\mathbb {R}}^{n}\right) \setminus \left\{ 0\right\} \) with the affine energy \(~{\mathcal {E}}_{n}\left( u\right) <1\), we have
$$\begin{aligned} {\displaystyle \int \nolimits _{{\mathbb {R}}^{n}}} \frac{\phi _{n,1}\left( \frac{2^{\frac{1}{n-1}}\alpha }{\left( 1+{\mathcal {E}}_{n}\left( u\right) ^{n}\right) ^{\frac{1}{n-1}}}\left| u\right| ^{\frac{n}{n-1}}\right) }{\left| x\right| ^{\beta }}dx\le C\left( n,\beta \right) \frac{\left\| u\right\| _{n}^{n-\beta }}{\left| 1-{\mathcal {E}}_{n}\left( u\right) ^{n}\right| ^{1-\frac{\beta }{n}}}. \end{aligned}$$
Moreover, the constant \(\left( 1-\frac{\beta }{n}\right) \alpha _{n}\) is the best possible in the sense that there is no uniform constant \(C(n, \beta )\) independent of u in the above inequality when \(\alpha >\left( 1-\frac{\beta }{n}\right) \alpha _{n}\). Second, we establish the following improved Adams type inequality in the spirit of Lions (Theorem 1.8): Let \(0\le \beta <2m\) and \(\tau >0\). Then there exists a constant \(C=C\left( m,\beta ,\tau \right) >0\) such that
$$\begin{aligned} \underset{u\in W^{2,m}\left( {\mathbb {R}}^{2m}\right) , \int _{ {\mathbb {R}}^{2m}}\left| \Delta u\right| ^{m}+\tau \left| u\right| ^{m} \le 1}{\sup } {\displaystyle \int \nolimits _{{\mathbb {R}}^{2m}}} \frac{\phi _{2m,2}\left( \frac{2^{\frac{1}{m-1}}\alpha }{\left( 1+\left\| \Delta u\right\| _{m}^{m}\right) ^{\frac{1}{m-1}}}\left| u\right| ^{\frac{m}{m-1}}\right) }{\left| x\right| ^{\beta }}dx\le C\left( m,\beta ,\tau \right) , \end{aligned}$$
for all \(0\le \alpha \le \left( 1-\frac{\beta }{2m}\right) \beta (2m,2)\). When \(\alpha >\left( 1-\frac{\beta }{2m}\right) \beta (2m,2)\), the supremum is infinite. In the above, we use
$$\begin{aligned} \phi _{p,q}(t)=e^{t}- {\displaystyle \sum \limits _{j=0}^{j_{\frac{p}{q}}-2}} \frac{t^{j}}{j!},\,\,\,j_{\frac{p}{q}}=\min \left\{ j\in {\mathbb {N}} :j\ge \frac{p}{q}\right\} \ge \frac{p}{q}. \end{aligned}$$
The main difficulties of proving the above results are that the symmetrization method does not work. Therefore, our main ideas are to develop a rearrangement-free argument in the spirit of Lam and Lu (J Differ Equ 255(3):298–325, 2013; Adv Math 231(6): 3259–3287, 2012), Lam et al. (Nonlinear Anal 95: 77–92, 2014) to establish such theorems. Third, as an application, we will study the existence of weak solutions to the biharmonic equation
$$\begin{aligned} \left\{ \begin{array}{l} \Delta ^{2}u+V(x)u=f(x,u)\text { in }{\mathbb {R}}^{4}\\ u\in H^{2}\left( {\mathbb {R}}^{4}\right) ,~u\ge 0 \end{array} \right. , \end{aligned}$$
where the nonlinearity f has the critical exponential growth.
  相似文献   

5.
In the present paper, we deal with the existence and multiplicity of solutions for the following impulsive fractional boundary value problem
$$\begin{aligned} {_{t}}D_{T}^{\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u(t)\right| ^{p-2}{_{0}}D_{t}^{\alpha }u(t)\right) + a(t)|u(t)|^{p-2}u(t)= & {} f(t,u(t)),\;\;t\ne t_j,\;\;\hbox {a.e.}\;\;t\in [0,T],\\ \Delta \left( {_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u(t_j)\right| ^{p-2}{_{0}}D_{t}^{\alpha }u(t_j)\right) \right)= & {} I_j(u(t_j))\;\;j=1,2,\ldots ,n,\\ u(0)= & {} u(T) = 0. \end{aligned}$$
where \(\alpha \in (1/p, 1]\), \(1<p<\infty \), \(0 = t_0<t_1< t_2< \cdots< t_n < t_{n+1} = T\), \(f:[0,T]\times \mathbb {R} \rightarrow \mathbb {R}\) and \(I_j : \mathbb {R} \rightarrow \mathbb {R}\), \(j = 1, \ldots , n\), are continuous functions, \(a\in C[0,T]\) and
$$\begin{aligned} \Delta \left( {_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u(t_j)\right| ^{p-2}{_{0}}D_{t}^{\alpha }u(t_j)\right) \right)= & {} {_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u\left( t_j^+\right) \right| ^{p-2}{_{0}}D_{t}^{\alpha }u\left( t_j^+\right) \right) \\&- {_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u(t_j^-)\right| ^{p-2}{_{0}}D_{t}^{\alpha }u\left( t_j^-\right) \right) ,\\ {_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u\left( t_j^+\right) \right| ^{p-2}{_{0}}D_{t}^{\alpha }u\left( t_j^+\right) \right)= & {} \lim _{t \rightarrow t_j^+} {_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u(t)\right| ^{p-2}{_{0}}D_{t}^{\alpha }u(t)\right) ,\\ {_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u(t_j^-)\right| ^{p-2}{_{0}}D_{t}^{\alpha }u(t_j^-)\right)= & {} \lim _{t\rightarrow t_j^-}{_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u(t)\right| ^{p-2}{_{0}}D_{t}^{\alpha }u(t)\right) . \end{aligned}$$
By using variational methods and critical point theory, we give some criteria to guarantee that the above-mentioned impulsive problems have at least one weak solution and a sequences of weak solutions.
  相似文献   

6.
For any prime \(p>3,\) we prove that
$$\begin{aligned} \sum _{k=0}^{p-1}\frac{3k+1}{(-8)^k}{2k\atopwithdelims ()k}^3\equiv p\left( \frac{-1}{p}\right) +p^3E_{p-3}\pmod {p^4}, \end{aligned}$$
where \(E_{0},E_{1},E_{2},\ldots \) are Euler numbers and \(\left( \frac{\cdot }{p}\right) \) is the Legendre symbol. This result confirms a conjecture of Z.-W. Sun. We also re-prove that for any odd prime \(p,\)
$$\begin{aligned} \sum _{k=0}^{\frac{p-1}{2}}\frac{6k+1}{(-512)^k}{2k\atopwithdelims ()k}^3\equiv p\left( \frac{-2}{p}\right) \pmod {p^2} \end{aligned}$$
using WZ method.
  相似文献   

7.
Recently, Andrews, Dixit, and Yee introduced a new partition function \(p_{\omega }(n)\) that denotes the number of partitions of n in which each odd part is less than twice the smallest part. The generating function of \(p_{\omega }(n)\) is associated with the third-order mock theta function \(\omega (q)\). Andrews, Passary, Sellers, and Yee proved three infinite families of congruences modulo 4 and 8 for \(p_{\omega }(n)\) and provided elementary proofs of congruences modulo 5 for \(p_{\omega }(n)\) which were first discovered by Waldherr. In this paper, we prove some new congruences modulo 5 and powers of 2 for \(p_{\omega }(n)\). In particular, we obtain some non-standard congruences for \(p_{\omega }(n)\). For example, we prove that for \(k\ge 0\), \( p_{\omega }\left( \frac{7\times 5^{2k+1}+1 }{3}\right) \equiv (-1)^k \ (\mathrm{mod}\ 5) \) and \( p_\omega \left( \frac{2^{2k+7}+1}{3}\right) \equiv 1251 \times (-1)^k \ (\mathrm{mod}\ 2^{11})\).  相似文献   

8.
In this paper, we show that if the volume sum \( \sum\nolimits_{h = 1}^\infty {{h^{n - 1}}{\Psi^t}(h)} \) converges for a function ψ (not necessarily monotonic), then the set of points \( \left( {x,{w_1}, \ldots, {w_{t - 1}}} \right) \in {\mathbb R} \times {{\mathbb Q}_{{p_1}}} \times \ldots \times {{\mathbb Q}_{{p_{t - 1}}}} \) that simultaneously satisfy the inequalities \( \left| {P(x)} \right| < \Psi (H) {\text{and}} {\left| {P\left( {{w_i}} \right)} \right|_{{p_i}}} < \Phi (H), 1 \leqslant i \leqslant t - 1 \), for infinitely many integer polynomials P has measure zero.  相似文献   

9.
The Hardy–Littlewood inequalities for m-linear forms have their origin with the seminal paper of Hardy and Littlewood (Q J Math 5:241–254, 1934). Nowadays it has been extensively investigated and many authors are looking for the optimal estimates of the constants involved. For \(m<p\le 2m\) it asserts that there is a constant \(D_{m,p}^{\mathbb {K}}\ge 1\) such that
$$\begin{aligned} \left( \sum _{j_{1},\ldots ,j_{m}=1}^{n}\left| T(e_{j_{1}},\ldots ,e_{j_{m} })\right| ^{\frac{p}{p-m}}\right) ^{\frac{p-m}{p}}\le D_{m,p} ^{\mathbb {K}}\left\| T\right\| , \end{aligned}$$
for all m-linear forms \(T:\ell _{p}^{n}\times \cdots \times \ell _{p} ^{n}\rightarrow \mathbb {K}=\mathbb {R}\) or \(\mathbb {C}\) and all positive integers n. Using a regularity principle recently proved by Pellegrino, Santos, Serrano and Teixeira, we present a straightforward proof of the Hardy–Littlewood inequality and show that:
  1. (1)
    If \(m<p_{1}\le p_{2}\le 2m\) then \(D_{m,p_{1}}^{\mathbb {K}}\le D_{m,p_{2}}^{\mathbb {K}}\);
     
  2. (2)
    \(D_{m,p}^{\mathbb {K}}\le D_{m-1,p}^{\mathbb {K}}\) whenever \(m<p\le 2\left( m-1\right) \) for all \(m\ge 3\).
     
  相似文献   

10.
Define \(g_n(x)=\sum _{k=0}^n\left( {\begin{array}{c}n\\ k\end{array}}\right) ^2\left( {\begin{array}{c}2k\\ k\end{array}}\right) x^k\) for \(n=0,1,2,\ldots \). Those numbers \(g_n=g_n(1)\) are closely related to Apéry numbers and Franel numbers. In this paper we establish some fundamental congruences involving \(g_n(x)\). For example, for any prime \(p>5\) we have
$$\begin{aligned} \sum _{k=1}^{p-1}\frac{g_k(-1)}{k}\equiv 0\pmod {p^2}\quad \text {and}\quad \sum _{k=1}^{p-1}\frac{g_k(-1)}{k^2}\equiv 0\pmod p. \end{aligned}$$
This is similar to Wolstenholme’s classical congruences
$$\begin{aligned} \sum _{k=1}^{p-1}\frac{1}{k}\equiv 0\pmod {p^2}\quad \text {and}\quad \sum _{k=1}^{p-1}\frac{1}{k^2}\equiv 0\pmod p \end{aligned}$$
for any prime \(p>3\).
  相似文献   

11.
Given \(1\le q \le 2\) and \(\alpha \in \mathbb {R}\), we study the properties of the solutions of the minimum problem
$$\begin{aligned} \lambda (\alpha ,q)=\min \left\{ \dfrac{\displaystyle \int _{-1}^{1}|u'|^{2}dx+\alpha \left| \int _{-1}^{1}|u|^{q-1}u\, dx\right| ^{\frac{2}{q}}}{\displaystyle \int _{-1}^{1}|u|^{2}dx}, u\in H_{0}^{1}(-1,1),\,u\not \equiv 0\right\} . \end{aligned}$$
In particular, depending on \(\alpha \) and q, we show that the minimizers have constant sign up to a critical value of \(\alpha =\alpha _{q}\), and when \(\alpha >\alpha _{q}\) the minimizers are odd.
  相似文献   

12.
Suppose that m ≥ 2, numbers p 1, …, p m ∈ (1, +∞] satisfy the inequality \(\frac{1}{{{p_1}}} + \cdots + \frac{1}{{{p_m}}} < 1\), and functions \({\gamma _1} \in {L^{{p_1}}}\left( {{?^1}} \right), \cdots ,{\gamma _m} \in {L^{{p_m}}}\left( {{?^1}} \right)\) are given. It is proved that if the set of “resonance” points of each of these functions is nonempty and the “nonresonance” condition holds (both notions were defined by the author for functions in L p (?1), p ∈ (1, +∞]), then \(\mathop {\sup }\limits_{a,b \in {R^1}} \left| {\mathop \smallint \limits_a^b \prod\limits_{k = 1}^m {[{\gamma _k}\left( \tau \right) + \Delta {\gamma _k}\left( \tau \right)]} d\tau } \right| \leqslant C\prod\limits_{k = 1}^m {{{\left\| {{\gamma _k} + \Delta {\gamma _k}} \right\|}_{L_{ak}^{pk}\left( {{R^1}} \right)}}} \) where the constant C > 0 is independent of the functions \(\Delta {\gamma _k} \in L_{ak}^{pk}\left( {{?^1}} \right)\) and \(L_{ak}^{pk}\left( {{?^1}} \right) \subset {L^{pk}}\left( {{?^1}} \right)\), 1 ≤ km, are special normed spaces. A condition for the integral over ?1 of a product of functions to be bounded is also given.  相似文献   

13.
Damien Roy 《Acta Mathematica》2011,206(2):325-362
Let \( \gamma = \frac{1}{2}\left( {1 + \sqrt {5} } \right) \) denote the golden ratio. H. Davenport and W. M. Schmidt showed in 1969 that, for each non-quadratic irrational real number ξ, there exists a constant c > 0 with the property that, for arbitrarily large values of X, the inequalities\( \left| {{x_0}} \right| \leqslant X,\,\,\,\left| {{x_0}\xi - {x_1}} \right| \leqslant c{X^{{{{ - 1}} \left/ {\gamma } \right.}}}\,\,\,{\text{and}}\,\,\,\left| {{x_0}{\xi^2} - {x_2}} \right| \leqslant c{X^{{{{ - 1}} \left/ {\gamma } \right.}}} \)admit no non-zero solution \( \left( {{x_0},{x_1},{x_2}} \right) \in {\mathbb{Z}^3} \). Their result is best possible in the sense that, conversely, there are countably many non-quadratic irrational real numbers ξ such that, for a larger value of c, the same inequalities admit a non-zero integer solution for each X ≥ 1. Such extremal numbers are transcendental and their set is stable under the action of \( {\text{G}}{{\text{L}}_2}\left( \mathbb{Z} \right) \) on \( \mathbb{R}\backslash \mathbb{Q} \) by linear fractional transformations. In this paper, it is shown that there exist extremal numbers ξ for which the Lagrange constant ν(ξ) = liminf q→∞ q||qξ|| is \( \frac{1}{3} \), the largest possible value for a non-quadratic number, and that there is a natural bijection between the \( {\text{G}}{{\text{L}}_2}\left( \mathbb{Z} \right) \)-equivalence classes of such numbers and the non-trivial solutions of Markoff’s equation.  相似文献   

14.
In this paper we prove the following theorem: Let \(\Omega \subset \mathbb {R}^{n}\) be a bounded open set, \(\psi \in C_{c}^{2}(\mathbb {R}^{n})\), \(\psi > 0\) on \(\partial \Omega \), be given boundary values and u a nonnegative solution to the problem
$$\begin{aligned}&u \in C^{0}(\overline{\Omega }) \cap C^{2}(\{u> 0\}) \\&u = \psi \quad \text { on } \; \partial \Omega \\&{\text {div}} \left( \frac{Du}{\sqrt{1 + |Du|^{2}}}\right) = \frac{\alpha }{u \sqrt{1 + |Du|^{2}}} \quad \text { in } \; \{u > 0\} \end{aligned}$$
where \(\alpha > 0\) is a given constant. Then \(u \in C^{0, \frac{1}{2}} (\overline{\Omega })\). Furthermore we prove strict mean convexity of the free boundary \(\partial \{u = 0\}\) provided \(\partial \{u = 0\}\) is assumed to be of class \(C^{2}\) and \(\alpha \ge 1\).
  相似文献   

15.
Let F(Z) be a cusp form of integral weight k relative to the Siegel modular group Spn(Z) and let f(N) be its Fourier coefficient with index N. Making use of Rankin's convolution, one proves the estimate (1) $$f(\mathcal{N}) = O(\left| \mathcal{N} \right|^{\tfrac{k}{2} - \tfrac{1}{2}\delta (n)} ),$$ where $$\delta (n) = \frac{{n + 1}}{{\left( {n + 1} \right)\left( {2n + \tfrac{{1 + ( - 1)^n }}{2}} \right) + 1}}.$$ Previously, for n ≥ 2 one has known Raghavan's estimate $$f(\mathcal{N}) = O(\left| \mathcal{N} \right|^{\tfrac{k}{2}} )$$ In the case n=2, Kitaoka has obtained a result, sharper than (1), namely: (2) $$f(\mathcal{N}) = O(\left| \mathcal{N} \right|^{\tfrac{k}{2} - \tfrac{1}{4} + \varepsilon } ).$$ At the end of the paper one investigates specially the case n=2. It is shown that in some cases the result (2) can be improved to, apparently, unimprovable estimates if one assumes some analogues of the Petersson conjecture. These results lead to a conjecture regarding the optimal estimates of f(N), n=2.  相似文献   

16.
In this paper, a sequence of solutions to the one-dimensional motion of a radiating gas are constructed. Furthermore, when the absorption coefficient α tends to ∞, the above solutions converge to the rarefaction wave, which is an elementary wave pattern of gas dynamics, with a convergence rate \(\alpha ^{ - \tfrac{1}{3}} \left| {\ln \alpha } \right|^2\).  相似文献   

17.
In this paper, we investigate the positive solutions to the following integral system with a polyharmonic extension operator on R~+_n:{u(x)=c_n,a∫_?R_+~n(x_n~(1-a_v)(y)/|x-y|~(n-a))dy,x∈R_+~n,v(y)=c_n,a∫_R_+~n(x_n~(1-a_uθ)(x)/|x-y|~(n-a))dx,y∈ ?R_+~n,where n 2, 2-n a 1, κ, θ 0. This integral system arises from the Euler-Lagrange equation corresponding to an integral inequality on the upper half space established by Chen(2014). The explicit formulations of positive solutions are obtained by the method of moving spheres for the critical case κ =n-2+a/n-a,θ =n+2-a/ n-2+a. Moreover,we also give the nonexistence of positive solutions in the subcritical case for the above system.  相似文献   

18.
In this paper we are concerned with the multiplicity of solutions for the following fractional Laplace problem
$$\begin{aligned} \left\{ \begin{array}{ll} (-\Delta )^{s}u= \mu |u|^{q-2}u + |u|^{2^*_s-2}u &{}\quad \text{ in } \Omega \\ u=0 &{}\quad \text{ in } {\mathbb {R}}^n{\setminus } \Omega , \end{array}\right. \end{aligned}$$
where \(\Omega \subset {\mathbb {R}}^n\) is an open bounded set with continuous boundary, \(n>2s\) with \(s\in (0,1),(-\Delta )^{s}\) is the fractional Laplacian operator, \(\mu \) is a positive real parameter, \(q\in [2, 2^*_s)\) and \(2^*_s=2n/(n-2s)\) is the fractional critical Sobolev exponent. Using the Lusternik–Schnirelman theory, we relate the number of nontrivial solutions of the problem under consideration with the topology of \(\Omega \). Precisely, we show that the problem has at least \(cat_{\Omega }(\Omega )\) nontrivial solutions, provided that \(q=2\) and \(n\geqslant 4s\) or \(q\in (2, 2^*_s)\) and \(n>2s(q+2)/q\), extending the validity of well-known results for the classical Laplace equation to the fractional nonlocal setting.
  相似文献   

19.
In this paper, we investigate blow up criteria for the local smooth solutions to the 3D incompressible nematic liquid crystal flows via the components of the gradient velocity field \(\nabla u\) and the gradient orientation field \(\nabla d\). More precisely, we show that \(0< T_{ \ast}<+\infty\) is the maximal time interval if and only if
$$\begin{aligned} & \int_{0}^{T_{\ast}} \bigl\Vert \Vert \partial_{i}u\Vert _{L_{x_{i}} ^{\gamma}} \bigr\Vert _{L_{x_{j}x_{k}}^{\alpha}}^{\beta}+ \|\nabla d\| _{L^{\infty}}^{\frac{8}{3}}\mathrm{d}t=\infty, \\ &\quad\text{ with } \frac{2}{\alpha}+\frac{2}{\beta}\leq\frac{3\alpha +2}{4\alpha}, \text{ and } 1\leq\gamma\leq\alpha,2< \alpha\leq+\infty, \end{aligned}$$
or
$$\begin{aligned} \int_{0}^{T_{\ast}}\|\partial_{3}u_{3} \|^{\beta}_{L^{\alpha}}+\| \nabla d\|^{\frac{8}{3}}_{L^{\infty}} \mathrm{d}t=\infty,\quad\text{with } \frac{3}{\alpha}+\frac{2}{\beta}\leq \frac{3(\alpha+2)}{4 \alpha}, \text{ and } 2< \alpha\leq\infty, \end{aligned}$$
where \(i,j,k\in\{1,2,3\}\), \(i\neq j\), \(i\neq k\), and \(j\neq k\).
  相似文献   

20.
Let k be an integer with \(k\ge 3\) and \(\eta \) be any real number. Suppose that \(\lambda _1, \lambda _2, \lambda _3, \lambda _4, \mu \) are non-zero real numbers, not all of the same sign and \(\lambda _1/\lambda _2\) is irrational. It is proved that the inequality \(|\lambda _1p_1^2+\lambda _2p_2^2+\lambda _3p_3^2+\lambda _4p_4^2+\mu p_5^k+\eta |<(\max \ p_j)^{-\sigma }\) has infinitely many solutions in prime variables \(p_1, p_2, \ldots , p_5\), where \(0<\sigma <\frac{1}{16}\) for \(k=3,\ 0<\sigma <\frac{5}{3k2^k}\) for \(4\le k\le 5\) and \(0<\sigma <\frac{40}{21k2^k}\) for \(k\ge 6\). This gives an improvement of an earlier result.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号