首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influences of the reductant concentration of NaBH4 and the quantity of Pt loading on the active surface area and the sensitivity of the Pt/Nafion electrodes prepared by an impregnation-reduction method in detecting oxygen were investigated in this study. The Pt/Nafion electrodes with a Pt loading of 4.99 mg/cm2, obtained at 0.0107 M Pt(NH3)4Cl2 and 0.06 M NaBH4, show maximum sensitivities of 0.0528 A/ppm and 0.0538 A/ppm obtained in O2 concentration regions of 0–5000 and 5000–50 000 ppm, respectively. A sensing model was also proposed to illustrate the sensing phenomenon. Received: 21 January 1998 / Accepted: 10 March 1998  相似文献   

2.
In this study, Pd/Nafion electrodes were prepared by impregnation-reduction methods in sensing oxygen. To prolong the electrode's life in practical use, a polypyrrole (PPy) film was chemically deposited onto the Pd/Nafion electrode. The sensitivities of PPy-modified Pd/Nafion electrodes are 0.00671 and 0.0117 μA/ppm obtained in O2 concentration regions of 0–5000 and 5000–50,000 ppm, respectively. Generally, the response time and the recovery time decreases and increases significantly with increasing O2 concentrations. After continuous aging tests for 48 h, the sensitivities of the Pd/Nafion and the PPy-modified Pd/Nafion electrodes decrease by 97% and 53%, respectively. Electronic Publication  相似文献   

3.
Palladium recovery from [Pd(NH3)4]Cl2 solutions (concentration in terms of the metal ∼1 g l−1) with flow-through porous electrodes was studied. The conditions of effective electrochemical recovery of Pd were found. Various porous cathodes were compared.  相似文献   

4.
《Electroanalysis》2006,18(23):2354-2360
In this study, simple disk electrodes were tested to monitor nitrate ion level in raw water: a Cu rod (3.1 mm diameter), a Pd rod (4 mm diameter) and an electrochemical copper deposit on Pd disk. These electrodes were able to detect significant variations of nitrate ions rate in synthetic media and in natural water. The influence of some ions such as SO42?, Mg2+, HCO3?, Cl?, NH4+ and Ca2+ were also tested. These electrodes, working at potentials close to ?1.5 V, were able to detect a 2 ppm nitrate ion variation in natural water. The preliminary results showed these electrodes should be promising alert systems for the in‐situ monitoring of nitrate ion level in natural waters.  相似文献   

5.
Precipitation of PdII as [Pd(NH3)2Cl2] and the Behaviour of Various Impurities The dependence of [Pd(NH3)2Cl2] precipitation upon reaction conditions (pH, Cl? content, reaction time, temperature) has been studied. The dependence of residual Pd content in the mother liquor upon these parameters was found to be significant only for the precipitation temperature (cPd at 20°C: 1.65 ± 0.11 mM; at 50°C: 6.70 ± 0.58 mM). The increase of Pd concentration was due to the formation of Pd(NH3)Cl3?. Among the impurities studied Cr, Ru, and Au were largely precipitated in the NH3 medium. In subsequent precipitation of [Pd(NH3)2Cl2] the following order of coprecipitation was found: The first four elements could be separated only incompletely by repeated reprecipitation. The coprecipitation of the platinum-group metals and of Au was highly dependence upon preceding formation of ammine complexes of these elements. The considerable coprecipitation of PtIV is presumably due to the formation of mixed Pd/Pt compounds, whereas the other impurities are adsorbed by [Pd(NH3)2Cl2].  相似文献   

6.
Titanium oxide nanotube electrodes were successfully prepared by anodic oxidation on pure Ti sheets in 0.5 wt.% NH4F + 1 wt.% (NH4)2SO4 + 90 wt.% glycerol mixed solutions. Nanotubes with diameter 40–60 nm and length 7.4 μm were observed by field emission scanning electron microscope. The electrochemical and photoelectrochemical characteristics of TiO2 nanotube electrode were investigated using linear polarization and electrochemical impedance spectroscopy techniques. The open-circuit potential dropped markedly under irradiation and with the increase of Cl concentrations. A saturated photocurrent of approximately 1.3 mA cm−2 was observed under 10-W low-mercury lamp irradiation in 0.1 M NaCl solution, which was much higher than film electrode. Meanwhile, the highest photocurrent in NaCl solution implied that the photogenerated holes preferred to combine with Cl. Thus, a significant synergetic effect on active chlorine production was observed in photoelectrocatalytic processes. Furthermore, the generation efficiency for active chlorine was about two times that using TiO2/Ti film electrode by sol–gel method. Finally, the effects of initial pH and Cl concentration were also discussed.  相似文献   

7.
Onion-like mesoporous carbon vesicle (MCV) with multilayer lamellar structure was synthesized by a simply aqueous emulsion co-assembly approach. Palladium (Pd) nanoparticles were deposited on the MCV matrix (Pd/MCV) by chemical reduction of H2PdCl4 with NaBH4 in aqueous media. Pd(X)/MCV (X wt.% indicates the Pd loading amount) nanocomposites with different Pd loading amount were obtained by adjusting the ratio of precursors. The particular structure of the MCV results in efficient mass transport and the onion-like layers of MCV allows for the obtainment of highly dispersed Pd nanoparticles. The introduction of Pd nanoparticles on the MCV matrix facilitates hydrazine oxidation at more negative potential and delivers higher oxidation current in comparison with MCV. A linear range from 2.0 × 10−8 to 7.1 × 10−5 M and a low detection limit of 14.9 nM for hydrazine are obtained at Pd(25)/MCV nanocomposite modified glassy carbon (GC) electrode. A nonenzymatic amperometric sensor for hydrogen peroxide based on the Pd(25)/MCV nanocomposite modified GC electrode is also developed. Compared with MCV modified GC electrode, the Pd(25)/MCV nanocomposite modified GC electrode displays enhanced amperometric responses towards hydrogen peroxide and gives a linear range from 1.0 × 10−7 to 6.1 × 10−3 M. The Pd(25)/MCV nanocomposite modified GC electrode achieves 95% of the steady-current for hydrogen peroxide within 1 s. The combination of the unique properties of Pd nanoparticles and the porous mesostructure of MCV matrix guarantees the improved analytical performance for hydrazine and hydrogen peroxide.  相似文献   

8.
Polymer-stabilized Pd nanoparticles on carbon support were synthesized by a low thermal procedure that does not involve the utilization of a reducing agent such as NaBH4 or hydrogen gas for the formation of the metallic nanoparticles. The Pd-catalyzed graphite particles were then mixed with known amounts of glucose oxidase (GOx) enzyme and Nafion to prepare a GOx-immobilized ink. A glassy carbon electrode (GCE) modified with the GOx ink was used to evaluate the performance of the biosensor electrode. The results of TEM and AFM show that the Pd nanoparticles are uniformly distributed on top of the substrate. Results are presented for sensing glucose through the voltammetric measurement of H2O2. Coupled with the simplicity of preparation, the biosensor exhibited high sensitivity and extended linear range for glucose measurement. Further, the electrochemical characteristics of the nanocomposite biosensor were evaluated with respect to the electrochemistry of potassium ferricyanide by cyclic voltammetry. Whereas the presence of polymer and Nafion improved the stability of both the ink and biosensor electrode, the concentration of glucose was measured without interferences from oxygen, ascorbic acid and uric acid because of the Nafion.  相似文献   

9.
采用聚乙烯吡咯烷酮(PVP)保护的化学共还原法制备了Pd/Co双金属纳米颗粒, 研究了PVP及还原剂(NaBH4)的用量、金属盐浓度、金属比例等对Pd/Co双金属纳米颗粒催化NaBH4制氢性能的影响. 透射电子显微镜(TEM)的结果表明, 所制备的Pd/Co双金属纳米颗粒的平均粒径在1.5-2.8 nm之间. Pd/Co双金属纳米颗粒(BNPs)的催化活性远高于Pd与Co单金属纳米颗粒的活性; 当Pd/Co的理论原子比为1/9时, 双金属纳米颗粒的催化活性最高可达15570 mol·mol-1·h-1 (文中纳米颗粒的催化活性均为每摩尔Pd的活性). 密度泛函理论(DFT)的计算结果表明, Pd原子与Co原子之间发生电荷转移, 使得Pd原子带负电而Co原子带正电, 荷电的Pd和Co原子进而成为催化反应的活性中心. 所制备的Pd/Co双金属纳米颗粒具有很好的催化耐久性, 即使重复使用5次后, 该催化剂仍具有较高的催化活性, 且使用后的纳米颗粒催化剂也没有出现团聚现象. 双金属纳米颗粒催化NaBH4水解反应的活化能约为54 kJ·mol-1.  相似文献   

10.
A novel kind of nanocomposite, titanate nanotubes (TNTs) decorated by electroactive Prussian blue (PB), was fabricated by a simple chemical method. The as-prepared nanocomposite was characterized by XRD, XPS, TEM, FT-IR and Cyclic voltammetry (CV). Experimental results revealed that PB was adsorbed on the surface of TNTs, and the adsorption capacity of TNTs was stronger than that of anatase-type TiO2 powder (TNP). The PB-TNTs nanocomposite was modified onto a glassy carbon electrode and the electrode showed excellent electroactivity. The modified electrode also exhibited outstanding electrocatalytic activity towards the reduction of hydrogen peroxide and can serve as an amperometric sensor for H2O2 detection. The sensor fabricated by casting Nafion (NF) above the PB-TNTs composite film (NF/PB-TNTs/GCE) showed two linear ranges of 2 × 10?5–5 × 10?4 M and 2 × 10?3–7 × 10?3 M, with a detection limit of 1 × 10?6 M. Furthermore, PB-TNTs modified electrode with Nafion (NF/PB-TNTs/GCE) showed wider linear range and better stability compared with PB-TNTs modified electrode without Nafion (PB-TNTs/GCE) and PB modified electrode with Nafion (NF/PB/GCE).  相似文献   

11.
Pd/Ag films were electrolessly deposited onto p-silicon (100)-activated seed layers of Ag and Pd, respectively, in the solution of 0.005 mol l−1 AgNO3 + 0.005 mol l−1 PdCl2 + 4.5 mol l−1 NH3 + 0.16 mol l−1 Na2EDTA+0.1 mol l−1 NH2NH2 (pH 10.5) at room temperature. The morphology and composition of the films were studied comparatively by using atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). Cathodic polarization curves for hydrogen evolution were recorded in 0.5-mol l−1 H2SO4 without illumination, in which the obtained films served as working electrodes. The experimental results show that the film obtained on the Ag seed layer was rather a pure Ag film and not a Pd/Ag film, and the Ag deposition rate on Pd sites was much faster than that on Ag sites.  相似文献   

12.
The reactions of 4-methoxybenzoylmethylenetriphenylphosphorane ylide (MOBPPY), {(Ph)3PCHCOC6H4OMe}, and 4-flourobenzoylmethylenetriphenylphosphorane ylide (FBPPY) with [Pd(C6H4CH2NH22-C-N)ClL] (L = Py, 3-MePy, 4-MePy, or PPh3), in equimolar ratios in CH2Cl2 yield [Pd(C6H4CH2NH22-C-N)L (Ye)]TfO [(L = PPh3, Ye = MOBPPY; L = PPh3, Ye = FBPPY; L = Py, Ye = MOBPPY; or L = 3-MePy, Ye = MOBPPY]. The reaction of MOBPPY with AgOTf (OTf = CF3SO3) in molar ratios (2:1) using dry acetone as solvent gives [Ag(MOBPPY)2]OTf.  相似文献   

13.
Viscosities for aqueous NH4Cl and tracer diffusion coefficients for22Na+,36Cl, HTO, and CH3OH, acetone and dimethylformamide (all14C-labelled) in NH4Cl supporting electrolyte are reported for 25°, together with tracer diffusion coefficients for22Na+,36Cl, and14CH3OH in 1M KI, and for14CH3OH in 1M MgCl2. The diffusion coefficient of HTO in NH4Cl solutions is slightly larger, for most of the concentration range investigated (0.05 to 4.5 M), than the value for pure water and is almost unaffected by the supporting electrolyte up to about 4M. Similar behavior is shown by CH3OH, acetone and dimethylformamide in NH4Cl solutions. Onsager limiting law behavior is approached by Cl at NH4Cl concentrations in the 0.05–0.1M region but at much lower concentrations by Na+.  相似文献   

14.
Thermolysis of double complex salt [Pd(NH3)4][AuCl4]2 has been studied in helium atmosphere from ambient to 350 °C. The XAFS of Pd K and Au L3 edges and thermogravimetry measurements have been carried out to characterize the intermediates and the final product. In the temperature range 115–160 °C the complex is decomposed to form Pd(NH3)2Cl2 and AuCl4−x N x species with x ranging from 2 to 3. Subsequent heating of the intermediate up to 300 °C leads to the total loss of NH3. The Au–Cl and Au–Au bonds form the local environment of Au at the stage of decomposition while only four chlorine atoms are around Pd. At the temperature of 330 °C the Au and Pd nanoparticles as well as residues of palladium chloride are detected. The final product consists of separated Au and Pd nanoparticles.  相似文献   

15.
《Electroanalysis》2004,16(16):1318-1323
The electrochemical behavior of NO2 at Au/Nafion, Pt/Nafion and Pt‐Au/Nafion electrodes was investigated by using electrochemical and SEM methods, respectively. It was found that the Pt‐Au/Nafion electrode showed higher electrocatalytic activity than Pt/Nafion and Au/Nafion electrodes. The net current density of Au/Nafion electrode decayed significantly during the reaction, though it showed high initial value. Pt/Nafion and Pt‐Au/Nafion electrodes, on the contrary, showed good stability. A quantitative determination of NO2 concentration was carried out at Pt‐Au/Nafion electrode and a satisfactory linear relationship was found for the NO2 concentration in the range of 0–100 ppm.  相似文献   

16.
The effects of palladium precursors (PdCl2, (NH4)2PdCl4, Pd(NH3)2Cl2, Pd(NO3)2 and Pd(CH3COO)2) on the catalytic properties in the selective oxidation of ethylene to acetic acid have been investigated for 1.0 wt% Pd–30 wt% H4SiW12O40/SiO2. The structures of the catalysts were characterized using X-ray diffraction, N2 adsorption, H2-pulse chemical adsorption, infrared spectrometry of the adsorbed pyridine, H2 temperature-programmed reduction and X-ray photoelectron spectroscopy. The present study demonstrates that the different palladium precursors can lead to the significant changes in the dispersion of palladium. It is found that Pd dispersion decreases as follows: PdCl2 > (NH4)2PdCl4 > Pd(NO3)2 > Pd(NH3)2Cl2 > Pd(C2H3O2)2, which is nearly identical to the catalytic activity. This indicates that the dispersion of palladium plays an important role in the catalytic activity. Furthermore, density of Lewis (L) and Brönsted (B) acid sites are also strongly dependent on the palladium precursors. It is also demonstrated that an effective catalyst should possess a well combination of Brönsted acid sites with dispersion of palladium.  相似文献   

17.
Summary Kinetics of formation of [PdCl4]2– from [Pd(ox)2]2– and [Pd(mal)2]2– has been studies in aqueous acid media in the presence of an excess of chloride ion by stopped-flow spectrophotometry. Both the complexes undergo the transformation in two well separated consecutive steps. In 0.02–0.05 M acid with 0.2 M Cl, Pd(AA)2– dissociates leading to the formation of [Pd(AA)Cl2]2– (where AA =ox2– or mal2–), which in 0.1–0.6 M acid and 1 M Cl forms [PdCl4]2– in a relatively slow step. For both steps kabs=k0+k2[H+][Cl]. Activation parameters corresponding to k0 and k2 have been determined. Results indicate that [Pd(mal)2]2– is much more labile to substitution than [Pd(ox)2]2– and for both the lability is far greater than that of [Pd(bigH)2]2+ and [Pt(ox)2]2– reported earlier.  相似文献   

18.
Hydrogen is regarded as the next-gen fuel for vehicles to avoid the emission of toxic gases, which needs a continuous monitoring of the concentration level. In the design of the H2 sensor, especially of flexible type, a sensing layer will be blended, which affects the sensing performance of the device. Based on this concern, the present investigation is carried out to understand the effect of the bending angle toward the sensing performance of bare and ZnO (n-type)-decorated Sb2O3 (p-type) nanobelt–based sensors for hydrogen gas. The sensing element was prepared by the thermal chemical vapor deposition followed by the drop-casting method. Furthermore, the role of the zinc precursor (molar concentration—1 M–3 M) on the preparation of ZnO-decorated Sb2O3 nanobelts was studied. Various techniques were used to confirm the formation of ZnO-decorated nanobelts such as X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), and Fourier transform infrared spectroscopy (FTIR). From these analyses, 1 M concentration of the zinc precursor shows uniform distribution of nanoparticles over the surface of Sb2O3 nanobelts. However, agglomeration was observed when the concentration of the zinc precursor increases from 1 M to 3 M. Later, the prepared nanobelts were deposited on the OverHead Projector (OHP) sheet by the doctor blade method for sensing hydrogen gas at 100 °C at a concentration of 1000–3000 ppm. In addition to it, the effect of the substrate bending angle (0°, 45°, 60°, and 90°) was analyzed at a fixed concentration of H2 gas (1000 ppm). From this study, it is clear that the highest sensing response was achieved for 1 M decorated nanobelts compared with bare as well as other concentrations because of uniform distribution of nanoparticles on the surface of nanobelts. Moreover, the prepared sample demonstrates better sensing performance with the bending of substrates, which suggests that the prepared sensor could be used for flexible electronic devices. The prepared nanobelts show a good H2 gas–sensing response even with bending of the substrates. The work suggests that the prepared sensor is applicable for flexible electronic devices.  相似文献   

19.
Two kinds of metal hydride alloys as the bi-functional catalyst concept for hydrogen generation and oxidation in hydrogen-diffusion electrodes were investigated. The AB5-type hydride electrode shows much higher catalytic activities than the Zr-based AB2-type hydride electrode. However, the activity of Zr-based hydride electrodes can be improved only after removal of zirconium oxides on surface by a 1.0 M HF solution. The experiments demonstrated that the both metal-hydride hydrogen-diffusion electrodes for cycles of hydrogen generation (12 h) and oxidation (12 h) had good stability under the current densities of 100 and 50 mA/cm2, respectively. The results also showed that small amounts of oxygen below 500 ppm and moisture up to 145,000 ppm in the hydrogen gas have little effect on the activity. It indicated that the hydride alloys as the non-noble-metal bi-functional catalysts in a reversible MH-air fuel cell have potential applications.  相似文献   

20.
8-Quinolinol (HQ) reacts with [Pd(α-/β-NaiR)Cl2] [α-/β-NaiR = 1-alkyl-2-(naphthyl-α-/β-azo)imidazole] in acetonitrile (MeCN) solution to give [Pd(α-/β-NaiR)(Q)](ClO4). The products are characterized by spectroscopic techniques (FT-IR, UV–Vis, NMR). The reaction kinetics show a first order dependence of rate on each of the concentration of the metal complex and HQ. Addition of LiCl to the reaction retarded the rate of reaction and has proved the cleavage of the Pd–Cl bond as the rate-determining step. Thermodynamic parameters (ΔH° and ΔS°) are determined from variable temperature kinetic studies. The magnitude of the second order rate constant, k2, increases as in the order: Pd(NaiEt)Cl2 < Pd(NaiMe)Cl2 < Pd(NaiBz)Cl2 as well as Pd(β-NaiR)Cl2 < Pd(α-NaiR)Cl2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号