首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Huyghe  J.  Janssen  J.D. 《Transport in Porous Media》1999,34(1-3):129-141
A thermo-chemo-electro-mechanical formulation of quasi-static finite deformation of swelling incompressible porous media is derived from a mixture theory including the volume fraction concept. The model consists of an electrically charged porous solid saturated with an ionic solution. Incompressible deformation is assumed. The mixture as a whole is assumed locally electroneutral. Different constituents following different kinematic paths are defined: solid, fluid, anions, cations and neutral solutes. Balance laws are derived for each constituent and for the mixture as a whole. A Lagrangian form of the second law of thermodynamics for incompressible porous media is used to derive the constitutive restrictions of the medium. The material properties are shown to be contained in one strain energy function and a matrix of frictional tensors. A principle of reversibility results from the constitutive restrictions. Existing theories of swelling media should be evaluated with respect to this principle.  相似文献   

2.
Diebels  S. 《Transport in Porous Media》1999,34(1-3):193-208
The extension of the classical mixture theory by the concept of volume fractions leads to the theory of porous media. In this article, the theory of porous media is generalised to micropolar constituents. The kinematic relations and the balance equations for a porous medium are developed without restricting the number of constituents. Based on the entropy inequality, the general form of the constitutive equations are derived for a binary medium consisting of a porous elastic skeleton saturated by a viscous pore-fluid. Both constituents are assumed to be compressible. Handling the saturation constraint by a Lagrangian multiplier leads to a compatibility of the proposed model to so-called hybrid and incompressible models.  相似文献   

3.
Shock waves in saturated thermoelastic porous media   总被引:1,自引:0,他引:1  
The objective of this paper is to develop and present the macroscopic motion equations for the fluid and the solid matrix, in the case of a saturated porous medium, in the form of coupled, nonlinear wave equations for the fluid and solid velocities. The nonlinearity in the equations enables the generation of shock waves. The complete set of equations required for determining phase velocities in the case of a thermoelastic solid matrix, includes also the energy balance equation for the porous medium as a whole, as well as mass balance equations for the two phase. In the special case of a rigid solid matrix, the wave after an abrupt change in pressure propagates only through the fluid.  相似文献   

4.
A general approach is proposed for defining the macroscopic free energy density function (and its complement, the free enthalpy) of a saturated porous medium submitted to finite deformations under non-isothermal conditions, in the case of compressible fluid and solid constituents. Reference is made to an elementary volume treated as an ‘open system’, moving with the solid skeleton. The proposed free energy depends on the generalised strains (namely an appropriate measure of the strain of the solid skeleton and the variation in fluid mass content) and the absolute temperatures of the solid and fluid phases (which are assumed to differ from each other for the sake of generality). This macroscopic energy proves to be a potential for the generalised stresses (namely the associated measure of the total stress and the free enthalpy of the pore fluid per unit mass) and the entropies of the solid and fluid phases. In contrast with mixture theories, the resulting free energy is not the simple sum of the free energies of the single constituents. Two simplified cases are examined in detail, i.e. the semilinear theory (originally proposed for isothermal conditions and extended here to non-isothermal problems) and the linear theory. The proposed approach paves the way to the consistent non-isothermal-hyperelastic-plastic modelling of saturated porous media with a compressible fluid and solid constituents.  相似文献   

5.
In Part I macroscopic field equations of mass, linear and angular momentum, energy, and the quasistatic form of Maxwell's equations for a multiphase, multicomponent medium were derived. Here we exploit the entropy inequality to obtain restrictions on constitutive relations at the macroscale for a 2-phase, multiple-constituent, polarizable mixture of fluids and solids. Specific emphasis is placed on charged porous media in the presence of electrolytes. The governing equations for the stress tensors of each phase, flow of the fluid through a deforming medium, and diffusion of constituents through such a medium are derived. The results have applications in swelling clays (smectites), biopolymers, biological membranes, pulsed electrophoresis, chromotography, drug delivery, and other swelling systems.  相似文献   

6.
A numerical scheme for the transient solution of a generalized version of the Poisson–Nernst–Planck (PNP) equations is presented. The finite element method is used to establish the coupled non-linear matrix system of equations capable of solving the present problem iteratively. The PNP equations represent a set of diffusion equations for charged species, i.e. dissolved ions, present in the pore solution of a rigid porous material in which the surface charge can be assumed neglectable. These equations are coupled to the ‘internally’ induced electrical field and to the velocity field of the fluid. The Nernst–Planck equations describing the diffusion of the ionic species and Gauss’ law in use are, however, coupled in both directions. The governing set of equations is derived from a simplified version of the so-called hybrid mixture theory (HMT). The simplifications used here mainly concerns ignoring the deformation and stresses in the porous material in which the ionic diffusion occurs. The HMT is a special version of the more ‘classical’ continuum mixture theories in the sense that it works with averaged equations at macroscale and that it includes the volume fractions of phases in its structure. The background to the PNP equations can by the HMT approach be described by using the postulates of mass conservation of constituents together with Gauss’ law used together with consistent constitutive laws. The HMT theory includes the constituent forms of the quasistatic version of Maxwell’s equations making it suitable for analyses of the kind addressed in this work. Within the framework of HTM, constitutive equations have been derived using the postulate of entropy inequality together with the technique of identifying properties by Lagrange multipliers. These results will be used in obtaining a closed set of equations for the present problem.  相似文献   

7.
The objective of this article is to derive a macroscopic Darcy’s law for a fluid-saturated moving porous medium whose matrix is composed of two solid phases which are not in direct contact with each other (weakly coupled solid phases). An example of this composite medium is the case of a solid matrix, unfrozen water, and an ice matrix within the pore space. The macroscopic equations for this type of saturated porous material are obtained using two-space homogenization techniques from microscopic periodic structures. The pore size is assumed to be small compared to the macroscopic scale under consideration. At the microscopic scale the two weakly coupled solids are described by the linear elastic equations, and the fluid by the linearized Navier–Stokes equations with appropriate boundary conditions at the solid–fluid interfaces. The derived Darcy’s law contains three permeability tensors whose properties are analyzed. Also, a formal relation with a previous macroscopic fluid flow equation obtained using a phenomenological approach is given. Moreover, a constructive proof of the existence of the three permeability tensors allows for their explicit computation employing finite elements or analogous numerical procedures.  相似文献   

8.
We present a poroplastic model of structural reorganisation in a binary mixture comprising a solid and a fluid phase. The solid phase is the macroscopic representation of a deformable porous medium, which exemplifies the matrix of a biological system (consisting e.g. of cells, extracellular matrix, collagen fibres). The fluid occupies the interstices of the porous medium and is allowed to move throughout it. The system reorganises its internal structure in response to mechanical stimuli. Such structural reorganisation, referred to as remodelling, is described in terms of “plastic” distortions, whose evolution is assumed to obey a phenomenological flow rule driven by stress. We study the influence of remodelling on the mechanical and hydraulic behaviour of the system, showing how the plastic distortions modulate the flow pattern of the fluid, and the distributions of pressure and stress inside it. To accomplish this task, we solve a highly nonlinear set of model equations by elaborating a previously developed numerical procedure, which is implemented in a non-commercial finite element solver.  相似文献   

9.
A linear isothermal dynamic model for a porous medium saturated by a Newtonian fluid is developed in the paper. In contrast to the mixture theory, the assumption of phase separation is avoided by introducing a single constitutive energy function for the porous medium. An important advantage of the proposed model is it can account for the couplings between the solid skeleton and the pore fluid. The mass and momentum balance equations are obtained according to the generalized mixture theory. Constitutive relations for the stress, the pore pressure are derived from the total free energy accounting for inter-phase interaction. In order to describe the momentum interaction between the fluid and the solid, a frequency independent Biot-type drag force model is introduced. A temporal variable porosity model with relaxation accounting for additional attenuation is introduced for the first time. The details of parameter estimation are discussed in the paper. It is demonstrated that all the material parameters in our model can be estimated from directly measurable phenomenological parameters. In terms of the equations of motion in the frequency domain, the wave velocities and the attenuations for the two P waves and one S wave are calculated. The influences of the porosity relaxation coefficient on the velocities and attenuation coefficients of the three waves of the porous medium are discussed in a numerical example.  相似文献   

10.
The classic constitutive equation relating fluid flux to a gradient in potential (pressure head plus gravitational energy) through a porous medium was discovered by Darcy in the mid 1800s. This law states that the flux is proportional to the pressure gradient. However, the passage of the fluid through the porous matrix may cause a local variation of the permeability. For example, the flow may perturb the porous formation by causing particle migration resulting in pore clogging or chemically reacting with the medium to enlarge the pores or diminish the size of the pores. In order to adequately represent these phenomena, we modify the constitutive equations by introducing a memory formalism operating on both the pressure gradient–flux and the pressure–density variations. The memory formalism is then represented with fractional order derivatives. We perform a number of laboratory experiments in uniformly packed columns where a constant pressure is applied on the lower boundary. Both homogeneous and heterogeneous media of different characteristic particle size dimension were employed. The low value assumed by the memory parameters, and in particular by the fractional order, demonstrates that memory is largely influencing the experiments. The data and theory show how mechanical compaction can decrease permeability, and consequently flux.  相似文献   

11.
In this article, porous media theories are referred to as mixture theories extended by the well-known concept of volume fractions. This approach implies the diverse field functions of both the porous solid matrix and the pore fluid to be represented by average functions of the macroscale.The present investigations are based on a binary model of incompressible constituents, solid skeleton, and pore liquid, where, in the constitutive range, use is made of the second-grade character of general heterogeneous media. Within the framework of geometrically finite theories, the paper offers a set of constitutive equations for the solid matrix, the viscous pore liquid and the different interactions between the constituents. The constitutive model applies to saturated as well as to empty solid materials, taking into account the physical nonlinearities based on elasto-plastic solid deformations. In particular, the constitutive model concentrates on granular materials like soil or concrete, where the elastic deformations are usually small and the plastic range is governed by kinematically hardening properties.  相似文献   

12.
The present article considers a numerical study of thermal dispersion effect on the non-Darcy natural convection over a vertical flat plate in a fluid saturated porous medium. Forchheimer extension is considered in the flow equations. The coefficient of thermal diffusivity has been assumed to be the sum of molecular diffusivity and the dispersion thermal diffusivity due to mechanical dispersion. The non-dimensional governing equations are solved by the finite element method (FEM) with a Newton–Raphson solver. Numerical results for the details of the stream function, velocity and temperature contours and profiles as well as heat transfer rates in terms of Nusselt number are obtained. The study shows that the increase in thermal dispersion coefficient of the porous medium results in more heat energy to disperse away in the normal direction to the wall. This induces more fluid to flow along the wall, enhancing the heat transfer coefficient particularly near the wall.  相似文献   

13.
The effects of thermal dispersion and thermal radiation on the non-Darcy natural convection over a vertical flat plate in a fluid saturated porous medium are studied. Forchheimer extension is considered in the flow equations. The coefficient of thermal diffusivity has been assumed to be the sum of molecular diffusivity and the dispersion thermal diffusivity due to mechanical dispersion. Rosseland approximation is used to describe the radiative heat flux in the energy equation. Similarity solution for the transformed governing equations is obtained. Numerical results for the details of the velocity and temperature profiles which are shown on graphs have been presented. The combined effect of thermal dispersion and thermal radiation, for the two cases Darcy and non-Darcy porous medium, on the heat transfer rate which are entered in tables is discussed.  相似文献   

14.
This research addresses the investigation of an elastic wave field in a homogeneous and isotropic porous medium which is fully saturated by a Newtonian viscous fluid. A new methodology is developed for describing the wave field in the medium excited by multiple energy sources. To quantify the relative displacements between the fluid and solid of the medium, the governing equations of the elastic wave propagation are derived in the form of displacements specially. The velocities and attenuation of the waves are considered as functions of viscosity and frequency. Making use of the Hankel function and the moving-coordinate method, a model of the wave motion with multiple cylindrical wave sources is built. Making use of the model established in this research, the relative displacement between the fluid and the solid can be quantified, and the wave field in the porous media can then be determined with the given energy sources. Numerical simulations of cylindrical waves from multiple energy sources propagating in the porous medium saturated by viscous fluid are performed for demonstrating the practicability of the model developed.  相似文献   

15.
An investigation is made into the propagation and evolution of wave fronts in a porous medium which is intended to contain two phases: the porous solid, referred to as the skeleton, and the fluid within the interconnected pores formed by the skeleton. In particular, the microscopic density of each real material is assumed to be unchangeable, while the macroscopic density of each phase may change, associated with the volume fractions. A two-phase porous medium model is concisely introduced based on the work by de Boer. Propagation conditions and amplitude evolution of the discontinuity waves are presented by use of the idea of surfaces of discontinuity, where the wave front is treated as a surface of discontinuity. It is demonstrated that the saturation condition entails certain restrictions between the amplitudes of the longitudinal waves in the solid and fluid phases. Two propagation velocities are attained upon examining the existence of the discontinuity waves. It is found that a completely coupled longitudinal wave and a pure transverse wave are realizable in the two-phase porous medium. The discontinuity strength of the pore-pressure may be determined by the amplitude of the coupled longitudinal wave. In the case of homogeneous weak discontinuities, explicit evolution equations of the amplitudes for two types of discontinuity waves are derived.  相似文献   

16.
The nonlinear stability of the conduction-diffusion solution of a fluid mixture heated and salted from below (and of a homogeneous fluid heated from below) and saturating a porous medium is studied with the Lyapunov direct method. Both Darcy and Brinkman models have been used. The porous medium is bounded by two horizontal parallel planes and is rotating about a vertical axis. Necessary and sufficient conditions of unconditional stability are proved (i.e., the critical linear and nonlinear stability Rayleigh numbers coincide). Our results generalize those given by Straughan [21] for a homogeneous fluid in the Darcy regime. In the case of a mixture two stabilizing effects act: that of the rotation and of the concentration of the solute. Received March 05, 2002 / Published online June 4, 2002 RID="a" ID="a" e-mail: lombardo@dmi.unict.it RID="b" ID="b" e-mail: mulone@dmi.unict.it Communicated by Brian Straugham, Durham  相似文献   

17.
In this article, free convection heat transfer over a vertical cylinder with variable surface temperature distributions in a porous medium is analyzed. It is assumed that the fluid and solid phases are not in local thermal equilibrium and, therefore, a two-temperature model of heat transfer is applied. The coupled momentum and energy equations are presented and then they are transformed into ordinary differential equations. The similarity equations are solved numerically. The resulting velocity, streamlines, temperature distributions for fluid and solid phases are shown for different values of parameters entering into the problem. The calculated values of the local Nusselt numbers for both solid and fluid phases are also shown.  相似文献   

18.
In this paper the field equations governing the dynamic response of a fluid-saturated elastic porous medium are analyzed and built up for the study of quasi-static and dynamical problems like the consolidation problem and wave propagation. The two constituents are assumed to be incompressible. A numerical solution is derived by means of the standard Galerkin procedure and the finite element method.  相似文献   

19.
The effect of yield stress on the flow characteristics of a Casson fluid in a homogeneous porous medium bounded by a circular tube is investigated by employing the Brinkman model to account for the Darcy resistance offered by the porous medium. The non-linear coupled implicit system of differential equations governing the flow is first transformed into suitable integral equations and are solved numerically. Analytical solution is obtained for a Newtonian fluid in the case of constant permeability, and the numerical solution is verified with that of the analytic solution. The effect of yield stress of the fluid and permeability of the porous medium on shear stress and velocity distributions, plug flow radius and flow rate are examined. The minimum pressure gradient required to start the flow is found to be independent of the permeability of the porous medium and is equal to the yield stress of the fluid.  相似文献   

20.
This paper finds stability limits for the onset of convection in a fluid saturated porous layer subject to alternating directions of centrifugal acceleration. The layer is homogeneous but mechanically and thermally anisotropic. The Brinkman equation is assumed to govern the momentum balance of the fluid flow. A linear analysis based on normal mode approach and a non-linear analysis based on energy method are made. The non-linear results are unconditional and their sharp limits are obtained. The numerical solutions predicted using the compound matrix method show that the anisotropy parameters and offset distances of the axis of rotation significantly affect the stability characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号